
-DR133 271 COMIPUTER ASSISTED SCHEDULING FOR AIR FORCE TACTICAL 1/2
FIGHTER SQUADRONS(U) ARMY COMMAND AND GENERAL STAFF
COLL FORT LEAVENWORTH KS B C DUGLE 03 JUN 83

UNCLASSIFIED SBI-AD-E7508045 F/G 1211 N

mhEohhohmomiI

77,7-- 1

Ul*
1.0 Lt., IL

41I2 114 16

MICRCOP RESQ W IO 128 CAR
NA* BU EOFSM193 -A

AbE2
III%~I

. . 47: 0" " -

NCOMPUTER ASSISTED SCHEDULING FOR
AIR FORCE TACTICAL FIGHTER SQUADRONS 0

A thesis presented to the Faculty of the U.S. Army
Command and General Staff College in partial

fulfillment of the requirements for the
degree 4

MASTER OF MILITARY ART AND SCIENCE I
by

BRIAN C. DUGLE, MA, USA'F
B.M.E., General Motors Institute, 1968

M.B.A. in Aviation, Embry-Riddle
Aeronautical University, 1982 DT"DTIC :SELECTE

OCT 4 1983

Fort Leavenworth, Kansas
1983

C_:19

Approved for public release, distribution
unlimited.

83-4538
e -A

SECURITY CLASSIFICATION OF THIS PAC (1When Data Fntered) "

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS
BEFORE COMPLETING FORM

1. REPORT NUMBER 2. GOVT ACCESSION NO. 3. RECIPIENT'S CATALOG NUMBER

4. TITLE (and Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

COMPUTER ASSISTED SCHEDULING FOR AIR Master's Thesis
FORCE TACTICAL FIGHTER SQUADRONS Ms" "ei

6. PERFORMING ORG. REPORT NUMBER .

7. AUTHOR(.) I. CONTRACT OR GRANT NUMBER(@)

Dugle, Brian C., Major, USAF

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. PROJECT, TASK
AREA & WORK UNIT NUMBERS

Student at the U.S. Army Command and
General Staff College, Fort Leavenworth,
Kansas. 66027.

It. CONTROLLING OFFICE NAME AND ADDRESS 12, REPORT DATE

HQ TRADOC, Attn: ATCS-D, Fort Monroe, VA 3 June 1983
23651 13. NUMBER OF PAGES

119 ; i :

14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office) 1S. SECURITY CLASS. (of thile report)

Unclassified

ISa. DECL ASSI FICATION/ DOWNGRADING - "
" '

SCHEDULE

16I. DISTRIBUTION STATEMENT (of tis Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMENT (of the abstract ntered In Block 20, it different from Report)

IS. SUPPLEMENTARY NOTES _....

Master of Military Art and Science (MMAS) thesis prepared at CGSC
in partial fulfillment of the Masters program requirements, U.S.
Army Command and General Staff College, Fort Leavenworth, Kansas
66027

19. KEY WORDS (Continue on evrerse aide It necessmy ad Identify by block number)

COMPUTER ASSISTED SCHEDULING, SCHEDULING, MICROCOMPUTER APPLICA-
TIONS, PROGRAMMING, BASIC PROGRAMMING, BASIC PROGRAM

20. ASTRACT (Ctm~auoo rovere. aidif receee7w an Identify by block nmber)

This project develops an algorithm modeling pa t of the squadron
scheduling function. The thesis includes a description of the
scheduling function, brief descriptions of some work previously
published on computer aids to scheduling, and describes the ap- " .

proach taken in developing the algorithm. The bulk of the thesis
is a listing of the programs written!to demonst rate the algorithm
The programs are written in Microsft'BASIC-80, version 5.21,
which is compatible with the Cromemco microcomputers supplied

DO , JF 1473 EaIOn Of I NOV 65 IS OBSOLETE

SECURITY CLASSIFICPtIOpt OF THIS PAGE (Whren Date Entered)

.

SOCURIMW.ICLASSIFICATION OF THIS PAGE(Whan Data Entered)

LAj

to fighter squadrons in the Air Force. The programs allow data
entry for a weekly schedule, show which pilots are qualified and
available for each activity, and allow selection of an individual
pilot for each.

rzi-

SEUIYCASFCTO FTHSPG47~ aeEfrd

j.

.

COMPUTER ASSISTED SCHEDULING FOR
AIR FORCE TACTICAL FIGHTER SQUADRONS

A thesis presented to the Faculty of the U.S. Army
Command and General Staff College in partial

fulfillment of the requirements for the
degree

MASTER OF MILITARY ART AND SCIENCE

by

BRIAN C. DUGLE, MAJ, USAF
B.M.E., General Motors Institute, 1968

M.B.A. in Aviation, Embry-Riddle
Aeronautical University, 1982

Fort Leavenworth, Kansas
1983

Approved for public release, distribution unlimited.

83-4538

4,. . , ,.- ,,- . -: ..; -.-,.. ""i .', . '" . ? . ..*i '"° " i"? " " ' ' ."i,"": " ' . -, .- *- .L' ...

-7 -: -- -- . -. -7.7

MASTER OF MILITARY ART AND SCIENCE

THESIS APPROVAL PAGE

Name of Candidate Major Brian C. Dugle

Title of Thesis Computer-Assisted Scheduling for Air Force Fighter

Squadrons

Approved by:

, Thesis Committee Chairman
Mr. avid I. Drummond, M

7. rmodI, Member, Graduate Faculty

ajor Donald F. Hayes, S

, Member, Consulting Faculty

Lieutenant Colonel William B. Allard, MS

Accepted this SIl day of 1983 by i Q1
Director, Graduate Degree Progm.

The opinions and conclusions expressed herein are those of the student author
and do not necessarily represent the views of the U.S. Army Command and General

Staff College or any other governmental agency. (References to this study

should include the foregoing statement.)

ii

COMPUTER ASSISTED SCHEDULING FOR AIR FORCE TACTICAL FIGHTER

SQUADRONS, by Major Brian C. Dugle, USAF, 119 pages.

This project develops an algorithm modeling part of the

squadron scheduling function. The thesis includes a de-

scription of the scheduling function, brief descriptions of

some work previously published on computer aids to sched-

uling, and describes the approach taken in developing the

algorithm. The bulk of the thesis is a listing of the pro-

grams written to demonstrate the algorithm. The programs

are written in Microsoft BASIC-80, version 5.21, which is

compatible with the Cromemco microcomputers supplied to

fighter squadrons in the Air Force. The programs allow data

entry for a weekly schedule, show which pilots are qualified

and available for each activity, and allow selection of an

individual pilot for each.

"

Accession For

DTIC T>:F

J11::t i f

Dist ri !:t io-/

Avail ibll.y Codes
;Av:til ::d o

Dist Special

ii A
4 .

, 17, 2

TABLE OF CONTENTS

Chapter
One. INTRODUCTION

Background
Problem Statement
Hypothesis Statement
Purpose
Organization

Two. REVIEW OF LITERATURE 5

Information Search
Computerizing TAC Scheduling
A Rand Study
Application of Linear Programming
A System Now In Use
Summary

Three. MODEL DESCRIPTIONT................

Requirement
Qualification
Availability
Currency
The Deconfliction Model
Model Capabilities and Limitations
Summary

Four. APPLICATION OF THE DECONFLICTION PROGRAM 16

Starting Out
System Operation
Daily Update
Summary

Five. CONCLUSIONS AND RECOMMENDATIONS. 21

iv

.1'

L'C'

Annex
A. TRAINING REQUIREMENTS AND THE

SCHEDULING SYSTEM 26

IntroductionGraduated Combat Capability

General Requirements
MAJCOM Requirements
F-15 Aircrew Training
Summary

B. DATA DEFINITION AND STORAGE. 37

Data Types
Defining What Is Stored
Data Mass Storage Media
Specific Data Types
Summary

C. PROGRAM LISTINGS 47

SELECTED BIBLIOGRAPHY117

v

| *lb .. .*. . . . •*- . .

IP CHAPTER 1

INTRODUCTION

Background

The most difficult and time consuming task in any

flying squadron is scheduling. This job is performed by one

or more crewmembers as an additional duty. It requires

matching the training requirements of between 40 and several

hundred individuals, depending on the type unit, with a

schedule of available training assets. These consist of

aircraft, flying routes,' training areas, ground scoring

sites, and numerous ground training events.

A typical fighter squadron today might support

training of 40 pilots. Often less than half are available

to fill the 16 to .24 sorties flown each day. In addition,

some of the pilots are required to fill "duties" such as

Runway Supervisory Unit (RSU) officer, Squadron Duty

Officer, or Supervisor of Flying (SOF). Alert duty,

meetings and appointments must also fit into the schedule.

Many of the squadron pilots have duty positions

outside the squadron building or have "additional duties"

that take up most of their time. A typical I- or 2-hour

5, flight itself takes up five to six hours when briefing and

debriefing times are included. Flying is considered a

I

2

relatively hazardous job; safety considerations dictate a

limit to the length of duty in a day which includes flying

and a minimum amount of "crew rest" prior to filling flying

duties on a subsequent day. Most of the training missions

and events have currency or recency restrictions associated

with them for much the same reasons. Under some conditions

a pilot is restricted to a syllabus or specific order of

missions with subsequent flights depending on successful

completion of a previous training sortie.

These many factors and constraints make it difficult

to devise a schedule that fits, much less one that is opti-

mized. Schedulers often work extremely long hours without

much job satisfaction. Operations Officers are generally

responsible for the scheduler's product and spend even long-

er hours reviewing and revising what the scheduler has done.

Problem Statement

Scheduling in a flying unit is highly complex, sub-

ject to error, and makes less than optimum use of training

resources resulting in discouraged schedulers and reduced

combat readiness.

Hypothesis Statement

It is hypothesized that it is possible to aid the

scheduler by modeling the scheduling function on a microcom-

puter and by helping to create alternative schedules. Such

a program model must work on the equipment now being deliv-

.

3

ered to Air Force fighter squadrons: a Cromemco System 2

using an 8-bit Z-80A microprocessor with the CDOS operating

system, two 380 KByte floppy diskette drives, a 5 MByte hard

disk, a Zenith Z-19 terminal, a dot matrix or letter quality

printer, a modem, and the Microsoft BASIC programming lan-

guage, version 51. The program algorithm must consider all

relevant factors or it is unlikely to be used. The system

must be flexible to allow for major and minor changes to

requirements, availability, and objectives.

Purpose

The purpose of this research is to develop an algo-

rithm to model the squadron scheduling function in suffi-

cient detail to make the product useful. The major diffi-

culty is that the problem is complex, the sources of data

diverse, and the guidance subject to many levels of inter-

pretation and emphasis. The goal is to define the logical

structure of the scheduling function and translate it into

code usable by the available hardware. Initially, the pro-

gram is to be specifically designed for the F-15 squadrons

IThis description was obtained from Maj Dave Smith,
Wing Training Officer of the 1st Tactical Fighter Wing,
Langely AFB, VA. His wing is one of the first to receive
this hardware and will help to evaluate the programs result-
ing from this project. The terms "KByte" and "MByte" refer
to 1024 and 1,048,576 bytes of mass storage capacity respec-
tively. A byte is one character (eight bits) of data on
this system; each byte can have 256 different values (28). *
These values can be interpreted differently in different
context which allows flexibility to represent nearly any-
thing.

.

4

of Tactical Air Command (TAC) in the continental United

States (CONUS) and United States Air Forces in Europe

(USAFE). The basic ideas may be expanded to a more general

form applicable to other fighter units.

The F-15 unit provides a good starting point for

several reasons. The squadron consists only of pilots (sin-

gle-seat aircraft) which reduces the level of model complex-

ity. The mission includes one major type of flying (Air

Superiority) rather than several. Perhaps most important

the author's recent experience is with F-15 units which

makes their problems more familiar.

Organization
Chapter 2 contains a brief review of some other

systems applying computers to the problem of scheduling.

Chapter 3 is a description of the model developed in this

project. Chapter 4 is a brief guide to its application in

the typical fighter squadron. Chapter 5 concludes with a

discussion of a system envisioned at the start of this

project and recommends areas for further research. Annex A

is review of the myriad requirements limiting the sched-

uler's options such as Air Force flying regulations and

manuals and regulations governing scheduling. Annex B cov-

ers the storage formats available for the data required to

make scheduling decisions. Annex C includes the listings of

the programs developed during this project.

CHAPTER 2

REVIEW OF LITERATURE

Information Search

A review of the literature on computer assisted

scheduling indicates that anyone currently working on the

subject has declined to write about it. Very limited refer-

ences were found in the Defense Technical Information Center

database, the library card catalogs, or in the indexes to

various periodicals including the papers written at Maxwell

AFB 1. None of these indicated specific work on using micro-

computers to aid the scheduler.

One of the few references found includes a very

general paper written by Major Richard Strunk submitted as a

reserch project to the Air command and Staff College in

April, 1977. Some material published on an. uncompleted pro-

ject for the Strategic Air Command as a part of United

States Air Force Project Rand represents in-depth study of

the subject in a different context. A thesis written by an

Air Force officer attending CGSC in 1980 covers a different

aspect of the subject. Further digging has uncovered some

other work done by industrious individuals which has been

iLocation of the Air War College and the Air Command
and Staff College.

.4-s

• --- , " , , , -. .,-, -" ., '_

6

described in conversation with the authors but which has not

been formally documented for publication.

Computerizing TAC Scheduling

As noted above, the research project prepared by

2Major Strunk" is somewhat general He stated his objective

was to develop and evaluate a Computer Assisted Scheduling

Program in order to answer the question, "Can Tactical Air

Command (TAC) Operations be computer scheduled?" He de-

scribed some factors that go into determining how this might

be done including a very elaborate flow chart for a series

of scheduling programs. The flowchart is 22 pages long and

quite detailed. In his concluding chapter, Major Strunk

admitted that he was not a computer programmer his evalua-

tion of the ability to have a computer schedule TAC opera-

tions was to state that his flowchart showed it could be

done. A portion of the flowcharted program was coded in

BASIC, but he observed that it was far from satisfactory in

that form.

A Rand Study

Dr. Morton B. Berman of the Rand Corporation spent

two years reserching and writing a series of reports on a

very ambitious project for the Strategic Air Command (SAC) 3 .

2Richard R. Strunk, Can TAC Operations be Computer
Scheduled? (Maxwell AFB, AL: ACSC, 1977).

3 Morton B. Berman, The DOSS Prototype. (Santa Moni-
ca, CA: Rand Corporation, #WN-9484-PR, 1976, and

--1........................... -7 ..

1hA -1 -w -

7

A great deal of this time was spent observing flying and

maintenance activities and procedures at several SAC bases

to gather data on the problem of resource allocations. The

last paper published (in 1976) was originally intended only

as an interim progress report on development of a Decision

Oriented Scheduling System (DOSS) Prototype.

According to the preliminary conclusions and exper-

iences of those using the prototype system, it had great

promise. Dr. Berman saw some significant problems ahead but

the project was shelved due to a lack of funds before he

could complete his work. He stated that his opinion was use

of a large mainframe computer (all that was avilable for his

project) was somewhat cumbersome for this type work. He

also voiced the opinion that the problem of scheduling in

Tactical Air Command type fighter units was much more diffi-

cult and involved that in Strategic Air Command, where his

work was done4 .

This difference is one of scope and scale; Dr. Ber-

man s prototype system involved all aspects of both Opera-

tions and Maintenance scheduling. This is a more manageable

problem in SAC due to the far fewer flights per aircraft per

day as compared to fighter operations.

Scheduling Aircrews and Aircraft: Problems of Resource Allo-
K: cation in the Strategic Air Command. (Santa Monica: Rand

Corporation, #R-1610-PR, 1975).-
4Telephone conversation with Dr. Berman, 13 October. 1982.

'."

2 8

Application of Linear Programming

Major Carlton L. Pannell submitted a thesis to CGSC

entitled A LINEAR PROGRAMMING APPLICATION TO AIRCREW SCHED-

ULING5 . The primary thrust of his application was to opti-

mize the distribution of training assets based on scores

achieved on the bombing range and a supervisor's subjective

evaluation. A section of the thesis was devoted to the

specific problem of building and deconflicting a weekly

schedule, but not in the detail attempted by this project.

A System Now In Use

The Colorado Air National Guard flying A-7D aircraft

(a type of fighter) out of Buckley Field has developed a

system that has been working for about four years6 . The

National Guard has unique problems due to the part time

nature of many of their personnel and their consequent

severely constrained availability. These same factors make

it more difficult for them to throw "manhours" at a job

(such as scheduling) and live with it, so Major Ron Germano

was given the funds to acquire the services of a time-shared

mainframe computer to help with scheduling and maintaining

records on the pilots of his unit.

5 Carlton L. Pannell, Major, USAF. A LINEAR PRO-
GRAMMING APPLICATION TO AIRCREW SCHEDULING. (Ft. Leaven-
worth, KS: CGSC, 1980).

6Telephone conversation with Maj Ron Germano, 162d
TFS, Buckley Field, CO, 12 October 1982.

-a--%."

9

He used an established database files structure

(supplied as part of the software available with the time-

shared system) to store a large volume of information. The

accessing methods available with this system allowed him to

search for and link data in different data files. Major

Germano's program applies arbitrary values or weights to

currency and recency data and current training accomplish-

ments data on each pilot and lists the pilot's relative

priority for a particular type of training.

The currency and recency items are based on guidance

from the various regulations and manuals covering the train-

ing required for each category of pilot. The relative

weights come from priorities established by the Operations

Officer and Commander. Using the priority lists thus devel-

oped, the program can then fill a "shell" or listing of the

available training missions for a given week.

This system is currently in use, although it is

constantly being updated. The product is currently used as

a starting point then "hand massaged" to accomodate other

constraints. He characterized the accessing language pro-

vided for use in manipulating the data stored by the time-

shared system as "like Pascal"7. With the capabilities of

7Pascal is a high-level structured language devel-
oped by Dr. Niklaus Wirth of Institut fuer Informatik, ETH
Zurich, Switzerland. See Kathleen Jensen and Niklaus Wirth,
PASCAL: User Manual and Report: 2d ed, (New York: Springer-
Verlag, 1974, corrected printing 1978), and Grogono, Peter.
Programming in Pascal: Revised Edition, (Reading, MA:
Addison-Wesley, 1980, 1978). Structured programming is also

. . .• .-

. -. -.. . , .• -. . - w m -- ,, ,
: ' '

,'

10

this language, Major Germano has been able to devlop a

program which stores the relevant data to make scheduling

decision, to assign some factors or values which reflect the

guidance of his bosses and higher headquarters on what is

acceptable, and to produce a beginning schedule from it.

Summary

The approaches of the systems introduced above vary

from that of this project in many ways. With the possible

exception of the system being employed by the National Guard

unit, little attempt was made to faithfully model the ac-

tions of the human scheduler. Deconfliction is the single

biggest problem for the human scheduler; it is very diffi-

cult to remember every detail about the availability and

conflicts of 40 individual pilots. This appears to be the

greatest potential contribution of this project.

covered by Brian W. Kernighan, and P. J. Plauger. The Ele-
ments of Programming Style: 2d ed (New York: McGraw-Hill,
1978, 1974). The significance of structured programming is
its emphasis on "top-down" or big to little structure and
the resulting understandability of the code. This concept
is one that will be applied in this project.

LI°.

CHAPTER 3

MODEL DESCRIPTION

Requirement

The requirement of this project is to develop an

algorithm modeling the Tactical Fighter Squadron scheduler.

This might be done at several different levels of complextiy

or fidelity; it will be developed here in the simple form

including only the pure scheduling function of deconflic-

tion.

Annex A includes specific data used daily by the

scheduler and training officer in the typical fighter squad-

ron. Of this data, qualification, availability, and curren-

cy are the factors of immediate concern to the scheduler.

Since this project is modeling the scheduling function,

these are the factors considered.

Qualification

Every scheduled activity includes certain qualifica-

tion requirements. For an ACBT mission, for instance, the

pilot must be qualified for air combat training missions,

and must be a flight leader under some conditions. A pilot

upgrading to flight lead status would require an IP (In-

structor Pilot) or a squadron supervisor on his wing. This

11

-7. :_.-7.7.7.7.-7 7.7.7

12

illustrates that each pilot has qualification attributes and

each activity on the schedule has qualification require-

ments.

Availability

Pilots are tasked regularly with meetings, asso-

ciated with either primary or additional duties, with indi-

vidual training needs, and with such things as dental ap-

pointments and annual physicals. Scheduling coordination

for these activities is often made individually with the

outside organization involved, either by the pilot himself

or by the squadron scheduling or training personnel. Once a

pilot is scheduled for such an activity, his availability

%4 for normal daily or weekly duties and training missions is

restricted. Each activity on the schedule has a scheduled

time with attendant time requirements for some period before

and after the scheduled time. Any pilot with other commit-

ments any time during the activity period is not available

as a candidate to fill that activity. Thus, the activity

'has an associated required availability period and the pilot

has an attribute of available or not available during it.

Currency

Currency restrictions arise primarily from the need

for regular practice of flying skills. Inexperienced pilots

are often given shorter currency periods than experienced

pilots, as shown in Annex A. Leave, extended periods of bad

13

weather, and other conflicts make it common for a few pilots

to be out of currency at any given time. Regaining curren-

cies such as landing, ACBT, or low level intercepts are not

too difficult, generally requiring a flight under the super-

vision of an instructor pilot or a squadron supervisor. One

goal of scheduling is to reduce the number of recurrency

flights to a minimum to preserve scarce squadron training

resources. Again, each activity has associated currency

requirements and each pilot has currency attributes.

The Deconfliction Model

At the most simple level, the scheduling algorithm

must accomplish "deconfliction". This is the process of

making certain no pilot is scheduled for incompatible activ-

ities at the same time and that each pilot is qualified and

current (or has the required supervision) for the activity

scheduled. Further, the process must insure that each ac-

tivity has someone assigned to do it. In mathematical

terms, this model may be described as follows.

Let [Sij, 1 <a i <- 48, 1 <- J <- 7) be a period of

time. Sij is the ith half-hour on the jth day

of the week and the (Sij) refers to a single

type of training. In particular, let (Sij)k be

the shell slice for the kth activity of K

possible types of activities.

Let Sijk be the full shell for all 1 <- k <- K type

7: 7

- 14

activities to be scheduled.

The problem is to assign the pilots to the shell

(Sijk), subject to pilot constraints, pilot

availability, and the requirements of activity

k.

Let f be a function on the elements of the shell

Sij k such that Sij k - 0 if no pilot is assigned

and Sijk - -1 if a pilot is assigned.

Thus we want to minimize

K 7 487 8 f(sij k)

k-l j-l i-l

or, since the day of the week is irrelevant and

all half-hour periods are equivalent,

K 336
min f(Sik)

k-l iinl

where Sik is the kth activity to be scheduled

during the ith half-hour period.

This description of the model shows its simplification to

the most basic level of scheduling, that is deconfliction

alone. Beyond this point, guidance from the Operations

Officer and information from the training section may be

used to optimize the training outcome of the scheduled

activities. For purposes of this project, only the fit of

qualified, available pilots and their currency status will

be considered.

.

%7.

. 15

Model Capabilities and Limitations

Effective application of the program using this

model should reduce the "busy work" and oversights of the

scheduler tremendously. The price paid for this aid is that

the data used by the system must be kept up-to-date. Quali-

fication data changes least often and could be updated

weekly. Availability and currency data must be updated

daily if the information is to be of any use.

The deconfliction model is based on the weekly

schedule cycle and is updated daily during the execution of

the schedule. The program presents candidates for each

schedule activity who have the required attributes of quali-

fication and availability and shows if they are current or

not. This should allow the scheduler to base his choice on

factors outside the model to achieve further training effec-

tiveness.

Summary

Given good data from which to make selections and

the speed, responsiveness, and accuracy of operation of the

microcomputer, the scheduler's job should become one of se-

lecting the "best" candidate for an activity rather than "a"

candidate who seems to fit.

CHAPTER 4

APPLICATION OF THE DECONFLICTION PROGRAM

The program listing included at Annex C is written

to apply to a typical single-mission, single-seat fighter

squadron. The concept could be expanded to cover broader

applications but time constraints precluded that in this

project.

Application of the model to the typical scheduling

operation should be primarily oriented to the weekly sched-

uling cycle. Entry of the "shell" and production of mul-

tiple weekly data files and schedule files should allow some

progress towards optimization beyond the deconfliction model

of the program. This chapter will discuss use of the

program.

Starting Out

A learning period must be expected before good

availability data will be routinely provided to the system.

This will require a policy that, after a certain date in the

implementation process, scheduling decisions will be based

only on data actually provided to the system. Such a "hard

line" attitude will be instrumental in getting good avail-

ability data into the system at an early stage. This data

16
. . .•

17

must often come from the pilot himself because most availa-

bility data generated by the system will be managed intern-

ally. Thus, the learning period involves all squadron per-

sonnel.

This availability data is one part of the informa-

tion stored in individual pilot data files. These are

sequential files in ASCII1 character form so that they can

be inspected with a simple text editor. A utility with

prompts for the information in the proper format is also

provided. These files are sequential access files for com-

pactness: their individual nature makes access time a minor

consideration, especially with speed of a hard disk.

All other information required for proper operation

of the system should come from within the scheduling sec-

tion. This includes other data contained in the individual

pilot files such as name, service number (SSAN), and other

administrative data, and qualification and currency data.

The qualification names are user definable and may be ex-

panded to much larger capacity than the fifteen slots pro-

vided. Each qualification attribute is a "yes" or "no",

that is, training or upgrade status qualifications must be

handled by a separate qualification name.

Currency data is included in ASCII character form

also, but is in Julian date format including a year digit.

1See Annex B, DATA DEFINITION AND STORAGE, for more
explanation on this subject.

' ;-.5",-;:. ?;: >.-..-.:.-.-......-.......-......-....- . .,i ,,. ;_

18

This allows easy conversion within the program to a form

suitable for comparison with the schedule activity date.

Since some currency periods are within the normal scheduling

cycle, currency status is provided to the scheduler but is

not used as a filter for selecting the candidates for a

given activity.

System Operation

Once the pilot data files have been developed, the

scheduler must begin entering the weekly schedule shell.

This will include all activities for which the squadron must

provide pilots. Some of these may be a standard set of

duties (for example, SOF, RSU, Alert, and so on) that will

be required on a regular or rotating basis. Most flights

and ground training events will have to be entered individ-

ually each week. All shell data will stored in a single

file for the week including the activity code, the activity

time as hours and minutes of the day, the start and end of

the activty time period in minutes from the week beginning,

and the pilot code if one has been assigned in advance.

Once the shell is complete and the pilot data is

available, the scheduler may make any number of attempts at

filling the schedule. Each iteration will start with a

schedule data file built from the shell data and the pilot

* data files. Once it has been made, it may be copied and a

sequence number assigned to distinguish it from others.

The weekly schedule data file includes pilot

19

qualification, availability, and currency data in a compact

matrix form for quick manipulation by the program. A random

access file format aids this speed and ease of access. Also

included is the data from the shell on each activity and a

matrix of which pilots are qualified and availabLe.

Building a trial schedule requires the scheduler to

select an activity to fill, check the candidates provided by

the system against outside priorities, and make a tentative

selection. After each selection the program must update

that pilot's availability data and the pilot availability

data for any activities affected by this selection. A flag

is provided if the current selection results in the number

of candidates for another activity dropping to zero. This

condition may be alleviated by using resources outside '

squadron or by "un-selecting" that pilot and making another

choice. This mechanism provides for minimizing the schedule

filling function described in chapter 3.

Once the schedule is completed, an alternate sched-

ule may be developed or this one may be made firm. The firm

schedule selected may be used to update the pilot availabil-

ity data files so that a historic record of all scheduled

activity is maintained. This may require periodic purging

of old data to keep file sizes and access times acceptable.

Daily Update

The firm schedule will be selected at the time

determined by the local scheduling cycle. Once firmed up,

20

it must continue to be updated with currency information, as

well as with any changes made in activities. Since all

qualification, currency and availability data for the week

is included in the weekly data file, it must be specifically

kept up-to-date as pilots accomplish events or sorties which

change their status.

If a selection was made based on anticipated events

that did not transpire, a check of currency and qualifica-

tion status on a daily basis will find the problem. Since

all availability data and currencies are accessed, the sys-

tem can be used to find an alternate candidate for the

activity or to change the supervision provided.

Summary

Use of the system developed during this project

should allow the scheduler to spend his time more productiv-

ely, resulting in fewer oversight errors and the opportunity

to optimize other factors not included in the program. This

may result in a higher quality product rather than just a

schedule that satisfices.

..

CHAPTER 5

CONCLUSIONS AND RECOMMENDATIONS

The initial goal of this project was to develop a

program that would automatically produce a schedule. Sever-

al factors made this goal impossible to achieve, the biggest

of which was time. This chapter will describe some of the

thoughts developed towards this goal so that others working

on similar projects may get some insight. In addition, some

suggestions are made about the programming language.

The scheduling function is almost inextricably link-

ed with training in a typical fighter squadron. The program

developed in this project includes some overlap into the

area of training in keeping track of currencies and qualifi-

cations. A program that successfully produces a complete

schedule will ne6d much more training type information.

This data will include much of that described in Annex A,

the requirements of TACM 51-50. This must be carefully

integrated into the real world system of official Air Force

record keeping so that duplication of effort is avoided.

This will require retrieval of the official data from its

storage medium, usually the base level main frame computer,

and operation based on what is stored there.

An alternative is to store the training

21

• _ - , , . - ° _ " ' . . , , , -. -, '.-. .: • 1 '. .'..-. -

22

accomplishment data on the microcomputer hard disk and sup-

ply the base level equipment from there. This could pose

some data security problems and is not likely to be

approved.

Updating the base level system could be done with

the help of a communications package and the modem over

normal telephone lines. If two-way data flow could be

established with proper safe guards for quality checking on

the data sent to the main frame, the microcomputer system

could have access to current, accurate training data.

Given this access, further programs could be devel-

oped which would allow the computation of the number of

requirements remaining for each pilot, in each category of

training, and this data could be used to prioritize who

would be automatically selected for a given sortie. The

priority basis should take into account not only require-

ments remaining, but also the opportunities remaining to

accomplish those requirements. A quotient of remaining

divided by opportunities would produce a fractional number

which would contain this relative value.

The priority established for one person to use a

sortie might have relatively little to do with a different

need by another for the same activity. For instance, one

pilot might require an ACBT sortie for training while an-

other required it for currency. The decision on who needed

it might be based on subjective data or data not available

. ., . -_ , . , _ , . .r. - •-- " ' L. . . - - , ... ,- . ", -r

23

to the microcomputer, but this could be simulated by ap-

plying a weight factor to each persons need. This weight

factor would then be the means of providing differing strat-

egies of schedule filling for the program. One strategy

weighting currency very heavily might result in a totally

different product than another which weighted training needs

more heavily.

Another area for further research is the language

used in developing this program. Interpreted BASIC is rela-

tively slow compared to some other languages, and its struc-

ture allows rather poor programming practices. This has

been avoided as much as possible during this project but no

doubt has crept in. The need for an easily understood pro-

gram in this instance, as in many cases, is the need many

users will find to change it, whether slightly or greatly.

Even a well written program will take many hours of study to

become familiar with the author's pattern or structure. A

poorly written program may be totally undecipherable even to

the author in six months time. Conversion of the basic

ideas of this program into another language such as Pascal

or Modula 2, a new language introduced by Dr. Niklaus Wirth,

could prove very beneficial in the future
1.

The other possibility for increasing the speed of

this program would be to compile it into machine code. The

producer of this dialect of BASIC, Microsoft Corporation,FSee Annex B for more information on programming.

24

has a compiler for it. However, the compiler places further

limitations on the structure available; the program included

here was not written within these limitations.

Thus, there are three recommendations: expand the

project to include the training data needed to produce a

schedule automatically; write the code in a better, faster

language; or modify the code to allow compiling it for

greater speed.

.1

ANNEXES

*0
C'.

C

Cl

Cl

ANNX A

TRAINING REQUIREMENTS AND THE SCHEDULING SYSTEM

Introduction

Training is normally considered to be a separate

functional area within the staff structure of a fighter

squadron, however, the training requirements of each indi-

vidual are what drive the formation of the schedule. This

annex will describe the requirements levied in TAC MANUALP- 51-501 and the resulting scheduling decisions that a algo-

rithm must model faithfully.

This project has been limited to the goal of devel-

oping the scheduling algorithm, but the data needed to make

effective decisions for scheduling will in many cases be

identical to that needed for planning by both schedulers and

the training staff. Some of this data must be stored in

official Air Force records such as Air Force Technical Order

(AFTO) form 781, Aerospace Vehicle Flight Data Document, in

Flight Records, and either TAC Automated Flying Training

Management System (TAFTRAMS) or Air Force Operations Manage-

ment System (AFORMS). The latter, AFORMS, is to be a

'DEPARTMENT OF THE AIR FORCE, Headquarters Tactical
Air Command, FLYING TRAINING: TACTICAL FIGHTER/RECONNAIS-
SANCE AIRCREW TRAINING. TAC MANUAL 51-50, Volume I, 26
October 1981.

26

K i l l l l l i i i i" '"3. :,i;-: ; ..:i: .i:; , ;; :.:-; ;;: -:;;. ,-;-_'; ;' ";;-;. -; ;- - . .; - _ , .,.. _..

27

universal training and flight data system which all units

will eventually use. For these reasons, the implementation

of the algorithm devised in this project must be consistent

with the basic information format and needs of these systems

or the goal of usefulness will not be met.

Another impact of the training manual requirements

on the scheduling system is the need to forecast the specif-

ic needs of the unit as a whole. Although this is again

normally a training staff function, the scheduler is often

in the middle of the process because of his direct use of

the results.

Graduated Combat Capability

TACM 51_52 is based on the concept that the unit

commander, normally the squadron commander, has the best

knowledge of the specific training needs of his pilots. The

Graduated Combat Capability (GCC) system gives him the abil-

ity to assign training assets to achieve various levels of

capability depending on the amount of those assets and the

experience and individual ability of his people. Volume I

of the manual is common to the three Tactical Air Force

(TAF) Major Commands (MAJCOMs), TAC, USAFE, and PACAF.

Chapter 6 of Volume I is written by each of the MAJCOMs to
l .

2Abbreviations for the manuals in this chapter will
be: TACM 51-50 for reference to the whole series of volumes,
Volume I for that specific volume exclusive of the MAJCOM
chapter, TAC Chapter 6 or USAFE Chapter 6 for their respec-
tive chapters, and Volume VII for the F-15 specific volume.

L28

reflect the individual needs of the theater and mission, and

applies to all types of fighters in each MAJCOMs inventory.

The subsequent volumes of TACM 51-50 reflect the training

requirements unique to the specific aircraft. Volume VII

includes this information for the F-15.

The training of all aircrew members is broken down

into three basic phases by TACM 51-50. IQT is the Initial

Qualification Training phase and is normally completed at an

RTU or Replacement Training Unit. There are occaisions when

an operational unit must "train from scratch", but they are

kept to a minimum.

MOT is the Mission Qualification Training phase that

leads to the first or lowest level of Mission Ready (MR)

status. MOT is accomplished in part at the RTU and com-

pleted at the gaining operational unit. An aircrew complet-

ing MQT at his unit is qualified at level A of the unit

Designed Operational Capability (DOC) and can effectively

accomplish the units basic mission.

The final type training covered in TACM 51-50 is CT,

Continuation Training. This is the day-to-day training

accomplished by all the squadron pilots to maintain their

mission proficiency or to advance to a higher level. The

squadron scheduler is concerned with the requirements of MOT

and CT training and the many upgrade programs that fall in

these areas. The algorithm modeling the scheduler must

allow for making decisions based on diverse requirements of

29

these programs.

General Requirements

The flying training requirements of Volume I are

specified in Table 3-1:

6 penetrations (instrument flying)

12 precision approaches

12 non-precision approaches

2 night landings

3 air-to-air refuelings (AAR)

2 night sorties (credited if 1 hour or 60%
of the flight was during darkness)

30 minimum total sorties

These requirements apply to all fighter aircraft training

regardless of the specific type (albeit with some excep-

,. tions) but do not address the training needs of specific

missions. The specified training must be accomplished dur-

ing each training cycle; these are defined as six-month

periods beginning 1 January and 1 July. Additional require-

ments of Volume I include Annual Instrument and Mission or

Tactical Qualification evaluation flights and associated

examinations, Aircrew Weapons and Tactics Academics, and

Target Area Certification or Verification. Rules and sup-

porting tables are provided for prorating training require-

ments of arriving or departing personnel (who are available

only part of the training period) or for other contingen-

cies.

" . . .

30

Certain reports of individual and unit capability

status are based on the number of sorties flown each month

by the squadrons pilots. Since the scheduler is the primary

planner of sorties, the sustainability of a given sortie

rate is within his purview even though the report itself is

normally prepared by the training staff. This reporting

philosophy is specified in Volume I. Also included are

K various definitions of types of training sorties, only one

of which can be accomplished per flight, and events of which

several may be accomplished.

MAJCOM Requirements

The final chapter of Volume I is written individual-

ly by each of the TAP MAJCOMs. This project is involved

with two of these: T&C Chapter 6, TAC AND ARF3 AIRCREW

TRAINING4 and USAFE Chapter 6, TACTICAL FIGHTER/RECONNAIS-

SANCE AIRCREW TRAINING5 . These additions are applicable to

all types of fighters but specific to the command of their

assignment.

TAC's Chapter 6 specifies the type of training data

3ARF is Air Reserve Forces, both Air National Guard
and US Air Force Reserve.

4DEPARTMENT OF THE AIR FORCE, Headquarters Tactical
Air Command, TAC AND AR' TRAINING: FIGHTER AND RECONNAIS-
SANCE. TACM 51-50 Volume I, Chapter 6, 19 February 1982.

5 DEPARTMENT OF THE AIR FORCE, Headquarters United
States Air Forces in Europe, Flying Training: TACTICAL
FIGHTER/RECONNAISSANCE AIRCREW TRAINING. USAFE Chapter 6 to
TACM 51-50, Volume I, 1 October 1982.

31

that must be tracked if the unit does not have TAFTRAMS or

AFORMS available. This data is basically that which is

needed to make scheduling decisions. It includes:

Unit sorties required and accomplished

Individual sortie standards

Requirements and accomplishments for
each assigned GCC level

Totals for each month for the semi-annual
training period

Individual monthly flying time accomplished

Individual required events accomplished

Individual weapon delivery data on
events required for MR qualification6

TAC Chapter 6 also defines the types of ground

training in three categories: Category I - Mission Essen-

tial, Category II - General Flying Related, and Category III

- Other Training Related to Aircrews. This training must

also be scheduled and affects availability both during con-

duct of the training and by its effect on crew rest.

Additional training guidance. included in this docu-

ment covers instrument training requirements, the composi-

tion of Realistic Training Sorties, Red Flag or equivalent

training, Chemical Warfare Defense (CWD) training (in the

aircraft and simulator), instructor currency.and minimums,

and additional TAC semi-annual requirements. These require-

ments consist of:

6TAC Chapter 6, p. 6-3.

32

EC (electronic combat) events 12

Instrument sorties

(inexperienced pilots) 2

Night AAR 1

No HUD (head up display) approaches:
one-half of Table 3-1 requirements

Formation Takeoffs 4

CW (chemical warfare) Exercise 1 annually7

TAC Chapter 6 specifies the following as goals:

Red Flag participation 1 annually

Formation events:

Day Takeoff 12

Night Takeoff 2

Day Landing 3

Departure (wing) 6

Approach (wing) 68

Table 6-12 covers another subject basic to design of

a successful scheduling algorithm, currencies. The follow-

ing list is excerpted from that table leaving out some of

the complicating qualifiers that do not apply to the F-15

aircraft or pilots.

7
7TAC Chapter 6, Table 6-11, p. 6-39

8TAC Chapter 6, Table 6-11, p. 6-39

.--

33

Accomplishment Inexperienced Experienced
(Event/Sortie) Pilot Pilot

Day Landing 30 days 45 days

Night Landing 15 30

AAR (Day or Night) S i x M o n t h s

ACBT (Air Combat
Training) 90 90

Formation Events

Takeoff
(Day or Night) 60 90

Day Landing 60 90

Low Level Flying 60 90

IP Rear Seat Landing 30

IP Instruction Flight 60

Dart 1 8 M o n t h s

These requirements are constraints or considerations

that must be taken into account by the scheduling algorithm

being developed. These may be different than those imposed

by another command and may vary further depending on the

specific type aircraft.

USAFE Chapter 6 has similar type information but the

currency numbers vary, different categories are defined, and

some guidance is much more specific. Paragraph 6-24 re-

quires inexperienced pilots to fly a non-demanding sortie if

they have not flown within 22 to 30 days and requires the

same of experienced pilots who have not flown for 31 to 45

days. The experience levels are defined in Volume I and the

- . - .l- -

34

non-demanding category is explained in paragraph 6-23 of

USAFE Chapter 6.

Other currencies specified in the USAFE chapter

include regaining landing currency after varying periods,

night landing, air refueling, wing formation landings, pre-

cision approaches, rear seat landing for instructors, and

flights while wearing CWD gear. Each of the type events and

sorties required later in the chapter are defined in para-

graph 6-25. For-the F-15, Table A3-1 specifies the training

requirements for maintaining the various levels of GCC qual-

ification. Some are defined as guidelines under some condi-

tions, but they are essentially required for purposes of the

scheduling algorithm.

GCC Level Sorties

Level: A B C

Total (Inex/Exp) 40/36 68/60 82/70

1 month GCC rate 7/6 12/10 14/12

3 month GCC rate 20/18 34/30 41/35

Weapons Events (Required)

Dart Qual

Gun Tracking 6 12 18

WSEP9 1 (sortie)

9WSEP is Weapons System Evaluation Program.

€.- I I -

35

GCC Events

Intercepts 20/16 26/22 32/28

ECCM10 2 4 6

Alert Scramble 2 3 4

Integrated Msn/Joint Ex 1 2 3

Comm Jam 2 4 6

ACBT Sorties 31/27 43/37 50/42

BFM/DBFM 11 Sorties 2 2 2

Instrument/Proficiency Sorties 2 4 4

AAR 3 3 3

Captive AIM-9 6 8 10

CWD Sorties 1 1 1

ACMI12 Sorties 4 6 8

F-15 AIRCREW TRAINING

Volume VII 1 3 of the series is specific to the F-15

aircraft. Paragraph 2-9 lists minimum sorties and events to

be accomplished during MQT, often a level of training the

scheduler must be concerned with. Chapter 3 includes the

10ECCM is Electronic Counter Countermeasures.
1 1 BFM is Basic Fighter Maneuvers, DBFM is the same

mission flown with dissimilar aircraft.
1 2ACMI is the Air Combat Maneuvering Instrumenta-

tion, a realistic training enhancement.
13DEPARTMENT OF THE AIR FORCE, Headquarters Tactical

Air Command, Flying Training: F-15 AIRCREW TRAINING. TAC
MANUAL 51-50, Volume VII, 26 March 1982.

36

minimum number of simulator hours required for each training

period, among other items.

Summary

This annex has shown some of the sources and numbers

that the scheduling algorithm must be capable of handling.

Of more significance than the numbers is their variation

depending on the situation. A given scheduler has essen-

tially the same type problems as any other but the specifics

of requirements vary widely depending on location, exper-

ience level of the pilots, weather affecting the base, and

maintenance capability currently enjoyed. The algorithm

must be able to take such diverse factors into account and

simulate the many small decisions the human scheduler would

normally make largely on intuition and produce a product--

the schedule. Its success will lie, if it is successful, in

making its programmed decisions without forgetting the de-

tails that sometimes escape the human scheduler in his flury

of work.

.

ANNEXC B

DATA DEFINITION AND STORAGE

The previous annex showed the sources and types of

data required by the algorithm to make programmed "deci-

sions". The significant factors are the variety and varia-

tion of these data from one location to another. The user

will have to be able to define and redefine data storage

parameters as the system is used, both to initialize it and

to react to changes in guidance or regulations. This annex

will describe the way different data types may be assigned

by the user and the general types of data the algorithm must

be able to access and manipulate.

Data Types

A microcomputer actually stores only one representa-

tion of data--the byte. A byte is defined as eight bits,

each of which can have the value "on" or "off". The context

in which a given byte is presented to the microprocessor

determines how it will be interpreted. Several general

types are available in Microsoft BASIC 1, including string or

character, integer, and single or double precision real

variables. Characters are stored with one byte used for

iTrade Mark of Microsoft Corp., Bellevue, WA.

37

• , . . • . ° . , . . . -. - - - . . I

38

each letter, digit of a number, or special code. This code

is called ASCII, for American Standard Code for Information

Interchange. Seven bits of each byte are used in this code

which results in 27 or 128 possible meanings. The eighth

bit may be left blank or it may be used for a parity check

on the other seven bits. In some systems the eighth bit is

used to define another 128 characters used for graphics.

Integers are stored in two consecutive bytes and may have

the value -32768 to 32767. The number 32767 is 215 less

one--the two bytes are interpreted as a binary number with

the most significant, or sixteenth, bit used as a "sign"

bit. Note the difference in representing the number 32767

in ASCII or as an integer: ASCII requires five bytes while

the binary form requires only two.

Real numbers, those that can have fractional values,

are stored in either four or eight bytes as single or double

precision variables. Single precision can represent numbers

to six significant figures while double represents sixteen

significant figures. Since these numbers are stored in

binary format, the fractional portion is subject to a very

small error when converting to and from decimal2 .

2This is not a problem in most applications but must

be considered if the result of a calculation is based on the
difference of two numbers, especially if the result is at or
near the limit of the number's precision. The most common

• example of this type difficulty is in interest calculations
for accounting applications, daily interest numbers can be
very small but are used in long iterations which compound a
very small error into a significant one. Money calculations
are required to balance to the penny. This fact must be

39

The flexibility of these data types will allow com-

plete and compact storage of the data required by this

model. Names of pilots, for instance, will be stored as a

string of characters while currency dates will be stored as

an integer or binary value. Storing a date as letter and

P. number characters might seem insignificant at first glance,

but seven bytes versus two becomes quite significant when

storing many different dates for each of 40 or more pilots.

Defining What Is Stored

The hardware or machine and program language depen-

dent data storage limitations will allow the application to

store any type variable data that may be needed. The appli-

cation program, or implementation of the scheduling algo-

rithm, must store, access, and manipulate the data in a

meaningful way. Since this will depend on many factors,

including what command guidelines and regulations affect the

unit, how many pilots are assigned, how many different

missions must be considered, and so on, a means of storing

not only the data but the meaning of the data must be de-

vised.

considered in the design of the algorithm, so that its
effects are not significant. Number precision data is from
the OSBORNE 1 User's Reference Guide by Thom Hogan and Mike
Iannamico, Hayward, CA: Osborne Computer Corp., 1981, re-
vised 2/22/82.

r

_- - -- v v r .. wo." . . . - . ., • .

40

Data Mass Storage Media

The storage medium available for this program is

called a disk; in this case either floppy or hard disk. The

difference in these is mainly one of capacity and access/

transfer speed, the type files that may be stored are essen-

tially identical. A disk is a random access medium for mass

storage, that is, it can be accessed directly throughout its

capacity. A sequential access device, on the other hand,

must read everything up to the position of the required data

in order to find that data.
L

An example of sequential access is the cassette

tape. It must be played until the desired selection is

reached; it must be rewound to find specific data again.

Use of the tape counter makes fast forwarding to the vicini-

ty of a selection possible, but finding one note or word of

a particular song would be difficult without listening to a

complete passage.

The random access disk has the data stored on it in

rings or tracks. There are many tracks so the amount of

data on each is a small portion of the total. Even though

the data is stored sequentially on each track, it can be

found very quickly by reading the whole track or a sector of

the track. Thus the disk is a good medium to have for

storing the data required by this project.

Data is stored on the disk in files. Each file may

include many records, each of which stores a unit of the

ilmm r~l. .m ~ ,. a.R, i,,L.,bmdM-, - .=- . , -

41

file. This can be visualized as each of the sheets contain-

ing responses to a questionaire. Each record is then di-

vided up into fields, or continuing the analogy, the re-

sponses to each question on the questionaire. For this

project, a file could contain records for each pilot showing

his name, Social Security Account Number (SSAN), birth

month, training status code, and qualifications. These

divisions by pilot would be the fields, the complete data on

a given pilot would be a record, and all the data on the

pilots of the squadron would be a file.

Disk files themselves may be either random access or

seqential access files. Sequential access files may be

found directly by the storage medium, the disk, but must be

read sequentially. Random access files may be accessed by

individual record directly. The advantage of sequential

files is their conservation of storage space--very little

overhead is used in storing the information. Random access

files require each record to be a consistent length, so a

specific record position can be calculated. This means that

if the longest name in the squadron has twenty five letters

in it, even the shortest name will also effectively take up

. the same twenty five bytes of storage. Perhaps more signif-

icant is the new pilot whose name will not fit into the

existing name field--not the best situation.

The point of this discussion is that data storage

must be considered carefully so that changes can be accommo-

I!

42

dated. Speed of access and active storage space within the

computer must weigh against disk space available. Most

significant is the ability to change the mode of storage as

requirements change. This suggests the use of a file to

store the meaning of the contents of another file. Allowing

the user to define what, where and how the data he/she needs

will be stored will make for maximum flexibility in applica-

tion to varying locations, guidance and regulations.

Specific Data Types

The algorithm being developed deals with pilot's

personal data, qualifications, currencies, requirements,

accomplishments, and availability. Time periods may vary

from three years, the longest currency period presently

needed, to a few minutes. Dates may be needed in terms of

days or months, or may refer to times years away. Effective

manipulation of data in these forms will require a few

standardizing decisions up front.

Individual name and personal data will mostly be

string or individual character type. If internal data ma-

nipulation is accomplished with subscripted or array vari-

ables, then this data may most easily fit into a sequential

file. Initialization of run time variables to the portions

of personal data needed would be quick and accomplished only

once. Prompts and other user interface messages could in-

sert the name while manipulating the data in an array. Data

such as currencies could be maintained in a list by pilot or

.

43

by the currency requirement, depending on the use being made

of the data.

The basic concept of the scheduling model is that a

relationship of priority exists between the number of oppor-

tunities available to accomplish a requirement and the num-

ber of those requirements that remain. Implementing this

concept requires subtracting the ipdividual pilot accom-

plishments from the total required for the given item. By

eliminating periods that are known to be unavailable, a

quotient representing the relative priority of pilots for a

specific training asset can be established. If only those

current and available are considered, then the pilot with

the highest priority is the one assigned to use that item.

This concept will require storage of many data items

at once. If the requirement is to fill a flight lead ACET

slot, for instance, the algorithm must check all pilots for

flight lead status, ACBT currency, and availability during

the time period of the flight. Then, assuming more than one

pilot is available who fills these criteria, each pilot's

priority for the ACBT flight must be calculated and com-

pared. When the highest priority is determined, given all

factors and weights to consider, that individual must then

be made "not available" for the duration of the flight and

the briefing and debriefing times associated with it. With

that pilot's data updated for the potential flight comple-

tion and the flight itself filled, the next priority of

.o

44

requirement must be examined in the same way.

Thus it becomes obvious that implementation of this

algorithm requires storage of and access to availability,

qualification, and currency data. A schedule is normally

built on a weekly basis with names, but tentative plans may

be made over longer periods. The availability data must be

stored in a format allowing any degree of precision required

by the situation. A month or more in advance, the scheduler

may be looking at half-day time increments; he will be

looking at parts of hours, perhaps minutes, when making a

final daily schedule.

The concept of a file defining the use of a file

makes it possible to store the standard data in a given

application very compactly. The range of integer numbers

allows currency data to be stored as the units digit of the

year times 1000 plus the Julian date. For example, 30

January 1983 would be 3 X 1000 + 30 or 3030. Availability

usually requires two times to define it, the beginning and

the duration or end time. Since a training period is six

months long, the day of the period times 100 plus the half-

hour of the day would fit into the integer number range

available3. This limits the resolution of the system to the

half-hour block that includes the start or end time, but

that may be sufficient for most long range factors.

3A maximum of 184 days times 100 equals 18400, plus
24 hours in a day times 2 equals a maximum value well within
the limits of integer values.

45

A date and time block providing one minute resolu-

tion would need four digits for the time of day and four

more for the day and year. If the duration were limited in

some way, it could reduce the storage space required for the

end data, but using the same format reduces the complexity

of coding and decoding without limiting flexibility. For

instance, the syptem could accommodate both a 30 minute

duration haircut appointment and a 179 day temporary duty

(TDY) assignment without modification.

One factor to consider in currency data storage is

the form of the requirement, currency dates, and the method

for their comparison. At machine level, the easiest compar-

ison is a logical AND or a subtraction. Since this is done

in binary form, if the data were stored in binary also, it

could have a beneficial effect on speed of operation. This

type of data storage and comparison technique will be used

for the availability checking routine. Numbers up to 255 in

decimal, or 28 less one, can be compared directly this way

with an eight bit microprocessor.

Summary

The data storage is driven by several factors, the

machine and language capabilities, mass storage characteris-

tics, and the nature of the information to be stored. The

variations from one user environment to another will require

significant user input into what information is stored and

how. The general types of information will be character

o..

46

strings# numbers, and dates, and their form will be the
smallest that can be used consistent with the range and
resolution required.

ANNEX C

PROGRAM LISTINGS

The programs listed on the following pages show

the ability of a microcomputer to handle the magnitude and

detail of the scheduling problem at squadron level. Several

statements are included which "stub" certain routines; these

were not required to demonstrate the algorithm and were not

completed due to time constraints.

These programs were written on an Osborne 1 with the

software included in the purchase price of that system. The

listing was done on an IDS Prism 132 printer in the 10 char-

acter per inch correspondence font mode.

Any reader with intent to apply these programs to an

actual scheduling job is encouraged to contact the author for

a copy of the latest version on disk.

47

.-,...'o- - - , -.......-.... - -. . . ••.... . . .* -* p _ * . . . - - . .£ •-. - . -- i., - .

48

1 00 ' CURDEF .SET * * ***********a*A

110 'program dated 16 May 1983

120
130 'This program sets or changes the values stored for
140 each currency code

150
160 DEFINT A-Z

170 CLRS a CHRI(26): DOWNS a CHRS(10)
10 MID.SCRNS a CLRS + STRINGS(8,10)

190 DIM EVENTS(I10)

200
210 OPEN "R", 1, "CUR.DEF", 28
220 FIELD*I, 2 AS NIlS, 20 AS N12$, 2 AS N13S, 2 AS N14S

2 AS N1SS

230
240 PRINT MID.SCRNS "Enter currency code number to chang
a or 0 to quit"
250 PRINT: PRINT"What number?";. INPUT" ", CODE

260 IF CODE a 0 THEN CLOSE: END ELSE IF CODE) 15 THEN P
RINT"Error, out of range (max is 15)": GOTO 250

270 GET41, CODE

280 CUR.CODE * CVI(NX1S)
290 CUR.NAMES a N12$
300 PER.EX a CVI(N135)

310 PER.INX a CVI(N14S)
320 EVNT a CVI(NIS$)
330 IF CUR.CODE () CODE THEN PRINT"File error: record nu

mber not equal to currency code": PRINT"Press any key to con

tinue.. ";: DUMMY$ a INPUTS(1)
340 PRINT MID.SCRNS "Current data:"
350 PRINT CUR.CODE CUR NAMES PER.EX PER. INX EVNT
360 PRINT

370 PRINT" Enter:"
380 PRINT" 0 if all correct, no changes"
390 PRINT" I to change currency name"

400 PRINT" 2 to change experienced currency per

i od"
410 PRINT" 3 to change inexperienced period"

420 PRINT" 4 to change updating event number"
430 PRINT" Which choice?"; A * VAL(INPUTS(1)) PRINT A

440 IF A a 0 THEN LSET NIlS a MKIS(CODE) PUTOI, CODE: G
OTO 240 ELSE IF A) 4 THEN PRINT"Error, enter a number from
0 to 4 only, try again. " GOTO 430
450 ON A GOSUB 500, 580, 640, 700

460 GOTO 340

470
480 _subroutines
490
S00 PRINT MID.SCRNS CUR.CCDE CUR NAMES PER EX PER.INX EV
NT
st0 PRINT: PRINT"What is the new currency name", INPUT
CUR NAMES
520 IF LEN(CUR NAMESI) 20 THEN PRINT"Too long, only 20
characters will be saved"

530 PRINT"Enter 0 if currency name is correct, I to chan

" -. ' .. ,...... .,. ,, ., , .. , -. . ,.~ .o . , ,

49
ait:" A a VAL(INPUTS(1)) PRINT A

540 IF A a 1 THEN COTO 510 ELSE IF A 0> 0 ""HEN PRINT'Err
or, 0 or I only, try again.. ": COTO 530
550 LSET N121 CUR-NAMES
560 RETURN
570
580 PRINT MID.SCRNI CUR.CODE CUR.NAMES PER.EX PER. INX EV
NT
590 PRINT: PRINT"Enter the period of currency for experi
*eced pilots"
600 INPUT"What is the currency period (days)? " PER-EX
610 LSET N13$ MKIS(PER.EX)
620 RETURN
630
640 PRINT MID.SCRNS CUR.CODE CUR.NAMES PER.EX PER. INX EV
NT
650 PRINT: PRINT"Enter the period of currency for inexpe
rienced pilots"
660 INPUT"What is the currency period (days)? ",PER.INX

670 'SET N14S -MKIS(PER.INX)
680 RETURN
690
700 PRINT MID.SCRNS CUR.CODE CUR-NAMES PER.EZ PER.INX EV
NT
710 PRINT: PRINT"Enter the event number that updates thi
s currency (? for help) "

720 INPUT"What is the event number? ",EVNTS

730 IF EVNTS *"'THEN GOSUB 790
740 EVNT a VAL(EVNTS)
750 IF EVNT (I OR EVNT > 10 THEN PRINT"Entor a number f
rom. 1 to 10 only.. .": GOSUB 790: COTO 740
760 LSET NI5S a MKIt(EVNT)
770 RETURN
760
790 OPEN "R", 2. "CUREVNT.DEP", 26
800 FIELD*2, 2 AS N216- 20 AS N22$
810 I a 0

820 FOR I *I TO 10
830 CETOZ, I
840 EVENTSCI) *N22S

850 NEXT
860 FOR I aI TO 10
870 PRINT I '-"EVENTS(I)

880 NEXT
890 INPUT"Which event number? '.EVNTI

900 RETURN

50
100 *** ACTDEF SET *
110 'program dated 16 May 1983

120
130 'This proqram sets or changes the values stored for
140 each activity code
IS0
160 DEFINT A-Z
170 CLRS = CHRS(26): DOWNS a CHRS(l0): MID.SCRNS a CLRS:

FOR I I 1 TO 8: MID.SCRNS a MID.SCRNS + DOWNS. NEXT

180 DIM ST.T(3), END.T(3), GPI(3), CUR CATS(IS), QUAL.CA
TS(15)
190 ST.T(0) * 0: ST.T(I) a IS: ST T(2) a 135: ST.T(3) a

165
200 END.T(0) = 0: END.T(1) a 90- END T(2) a 180" END.T(3

- 240
210 GPS(0) = "Non-duty activities" GPS(I) a "Duty/non-f
lying activities"

220 GPS(2) a "Flying activities": GPS(3) a "Long flight
activities"

30
240 OPEN "R"? 1, "ACT DEF", 46
250 FIELD*1, 2 AS NiS., 20 AS NiZS, 2 AS N13S, 2 AS N14S
! 10 AS NIS , .10 AS N16S

260
270 PRINT MID SCRNS "Enter activity code number to chang
a or 0 to quit"

260 PRINT: PRINT"What number?";: INPUT" ", CODE
290 IF CODE n 0 THEN CLOSE: END ELSE IF CODE) 255 THEN
PRINT"Error, out of range (max is 255)": GOTO 280

300 GETUI, CODE
310 ACT.CODE * CVI(NI1S)

320 ACT.NAMES N 112S
330 ST.T a CVI(NI3S)
340 END T a CVI(N14S)

350 CURS a NISS

360 QUALS a N16S
370 IF ACT.CODE () CODE THEN PRINT"File error record nu
mber not equal to activity code": PRINT"Press any key to con
tinue. . ;

DUMMYS INPUTS(i)
380 PRINT MID.SCRNS "Current data:"

390 PRINT ACT.CODE ACT.NAMES ST T END T

400 PRINT
410 PRINT" Enter'"

420 PRINT" 0 if all correct. no changes"

430 PRINT" 1 to change activity name"
440 PRINT" 2 to change start or end time offset
6"

450 PRINT" 3 to check currency requirements"

460 PRINT" 4 to check qualification requirement
5"

470 PRINT" Which choice"; A = VALCINPUTS(1)) PRINT A
480 'F A a 0 THEN LSET Nil a MKIS(CODE) PUTOI, CODE C

OTO 270 ELSE IF A) 4 THEN PR!NT"Error, enter a number from

0 to 4 only,

,, , , :; -..;-...,-. - . . -. , •- .; - .

51
try again " GOTO 470

490 ON A GOSUB 540. 620, 790, 1030

500 GOTO 380
510
520 '_subroutines

530
540 PRINT MIDSCRNS ACT NAMES
550 PRINT"What is the new activity name";: INPUT ACT NAN
E$

560 IF LEN(ACT.NAMES) > 20 THEN PRINT"Too long, only 20
characters will be saved"
570 PRINT"Enter 0 if activity name is correct, I to chan

ge it: ";: A a VAL(INPUTS()): PRINT A
580 IF A = 1 THEN GOTO 460 ELSE IF A <> 0 THEN PRINT"Err
or, 0 or I only, try again...": GOTO 490

590 LSET N125 a ACT.NAMES

600 RETURN
610
620 PRINT MID.SCRNS "Start offset is the time before the
activity that availability is required"

630 PRINT"End offset is the time for the activity and de
brief or travel time following"

640 J a ACT.CODE I 64
650 PRINT"This activity code group includes " GPS(J) ...

660 PRINT ST.T(J) "is the standard number of minutes set
for start offset"

670 PRINT END.T(J) "is the standard end offset"
680 PRINT"Enter:"
690 PRINT" 0 if the old offsets are correct"
700 PRINT" I to change to the standard offsets"
710 PRINT" 2 to enter different offsets"
720 PR!NT"Which choice? ";: A = VAL(INPUTS(1)): PRINT A
730 IF A a 0 THEN GOTO 760 ELSE IF A > 2 THEN PRINT"Erro
r, 0, 1, or 2 only, try again.. ": GOTO 720
740 IF A a I THEN ST.T a ST.T(J): END.T a END.T(J)
750 IF A a 2 THEN INPUT"Start offset (minutes): ", ST.T:
INPUT"End offset (minutes): ", END.T

760 LSET N13S = MKIS(ST T): LSET N14S a MKI$(END.T)
770 RETURN

780

790 OPEN "R", 2, "CUR.DEF", 28
o00 FIELD*2, 2 AS N21S, 20 AS N226, 2 AS N23S, 2 AS N24S
2 AS N25$

810 I a 0
820 FOR I I 1 TO 15
830 GET#2, I
840 CUR CATS(I) a N22S
850 NEXT
860 PRINT IDSCRNS "Up to five combinations of currenci

es are allowed for each activity"

870 PRINT"For each currency category enter I if it appli
es. 0 if it does not

880 CUR(l) 0 0: J I I
890 FOR I I TO 15

900 PRINT CUR CATI(l) "! " DT * VALfINPUTS(1)

S" , _" , ,, " : ' " : ' '" _ ' " ' ' . . -. , . . , . " ' " ' '. . i " ". . - "

52

) PRINT BIT

910 IF SIT THEN CUR(J) = CUR(J) 2*(:-1)
920 NEXT

930 PRINT"This set complete, enter 0 if done, I to enter
another set";: A = VAL(INPUTS(l)) PRINT A

940 IF A a 1 THEN J a J + 1. IF J) 5 THEN PRINT"No more
room for currency sets" J S ELSE CUR(J) = 0 GOTO 890

950 IF A () 0 THEN PRINT"Error, enter 0 or I only, try a
gain...": GOTO 930

960 CURR$ a
970 FOR I a I TO J

980 CURR$ * CURRS * MKIS(CUR(U))
990 NEXT

1000 LSET N15S a CURRS
1010 CLOSE*2: RETURN

1020
1030 OPEN "R", 2, "QUAL DEF", Z2
1040 FIELD2, 2 AS N21$, 20 AS N2ZS

.050 I a 0
1060 FOR I * I TO 15

1070 GET*2, I
1080 QUAL.CATf(1) - N22S

1090 NEXT
1100 PRINT MID.SCRNS "Up to fio, combinations of qualific
ations are allowed for each activity"

1110 PRINT"For each qualification category enter I if it

applies, 0 if it does not..."

1120 QUAL(1) a 0: J = 1
1130 FOR I u t TO 15
1140 PRINT QUAL.CATS(I) "S ": BIT - VAL(INPUTS(1
)): PRINT BIT

1150 IF SIT THEN OUAL(J) * QUAL(J) + 2*(I-1)
1160 NEXT

1170 PRINT"This set complete, enter 0 if done, 1 to enter

another set";: A = VAL(INPUTS(1)): PRINT A
1180 IF A a I THEN J a J + 1: IF J) 5 THEN PRINT"No more
room for qualification sets". J a S ELSE QUAL(J) a 0: GOTO

1130

1190 IF A () 0 THEN PRINT"Error, enter 0 or I only, try a
gain...": GOTO 1170

1200 QUALS S
1210 FORI I TO J
1220 QUALS * QUALS M MKIS(QUAL(I))
1230 NEXT
1240 LSET N161 a QUALS

1250 CLOSE*2: RETURN
1260

K°°

r,,... .,i .' ' ... , ' *... ..-., '' -. ' -" ...- ., -•- -- .., -

p.7.

-. 53

too 'w UPDATE *****************a*
110 'program dated 21 May 1983
120
130 'This program allows entry of availability data for
140 pilots
150
160 'variables required:
170 none
180
190 returns:
200 PILnn.DAT files updated and in order
210
220 DEFINT A-Z
230 CLRS = CHR$(26): DOWNS u CHRS(10): ESCS a CHRI(27)
240 MID.SCRNS = CLRS + STRINCS(6,10)
250 HOMES = CHR$(30): CLR.LINES a ESCS + "T"
260 CS a "Enter: 0 if correct, 1 to change it:
270 Es - "Error, enter 0 or I only, try again..."
280
290 MAX.PIL.NUM 60
300 IF P$(0,0) 0 CHRS(255) THEN ERASE PS: DIM PS(MAX.PI
L.NUM, 4)

310 IF QUALS(0) , CHR$(255) THEN ERASE QUALS. DIM QUALS
(15)
320
330 'open key file..

340 GOSUB 4080
350 'read in all names...

360 GOSUB 4010
370 CLOSE

380 1

390 'open qual.def file...

400 GOSUE 4120
410 FOR I a I TO 15: GET02, I: QUAL$IC) 14225. NEXT: CL

OSE
420
430 'open curevnt.def file.
440 GOSUS 4160
450 FOR I = I TO 10i GET02, 1: TRIMS NZ2S. GOSUB 2490.
EVENTS(I) a TR$MS: NEXT: CLOSE

460
470 PRINT MID.SCRNS " Enter:"
480 PRINT" 0 to quit, all done"
490 PRINT" I to add a new pilot data file"
500 PRINIT" 2 to change data in existing data fi

Ie"
510 PRINT" 3 to delete a pilot data file"
520 PRINT" Which choice? ";: SEL a VAL(INPUTS(1)). PRIX

T SEL
530 IF SEL (a 0 THEN END ELSE !F SEL) 3 THEN PRINT"Erro

r. enter a number 0 to 3 only. try again . ." GOTO 520
540 ON SEL GOSUE 600, 1340, 1560
550 GOTO 470
560

570 '__add_pilot_data

54

Soo

390 'print names to screen...
600 GOSUB 3890
610

620 INPUT"Which pilot number do you want to use? ", MUM
630 IF NUM a 0 GOTO 1280

640 NUMS a STRI(NUM)
650 NUMS a MIDS(NUMS,2)
660

670 'check if file already exists...

680 ON ERROR GOTO 700

690 FILENAMES a "PIL" * NUMS + ".DAT": OPEN "1", 1, FILE

NAMES
700 IF ERR a 53 THEN RESUME 750
710 PRINT FILENAMES " exists on this disk, confirm you w

ant to overwrite (destroy) it"

720 PRINT: PRINT"Enter 0 to continue, 1 to NOT overwrite

this file: ";: AS = INPUTS(1): PRINT AS

730 IF AS * "I" GOTO 420

740 IF AS 0 "0" THEN PRINT ES: GOTO 720

750 ON ERROR GOTO 0
760 CLOSE

770
780 'name data entered at subroutines...

790 FOR I a I TO 3: ON I GOSUB 4270, 4360, 4400: NEXT

00
810 'check admin data, update key file...
820 GOSUU 2580

830
840 'now put in individual file...
850 OPEN "0", 1, FILENAMES

860 VRITE01, NUMS
870 WRITECI, L NAMES, F.NAMES, MIS

880 WRITE01, RANKS

890 WRITE0I, SSANS

900
9t0 'ask and save qualifications at once...

920 WRITE#1, "QUALIFICATIONS."
930 FOR I a I TO 15

940 PRINT MID.SCRNS

950 PRINT"Enter a I digit if the qualification applies,

0 if it does not"

960 PRINT: PRINT OUALS(I) "? 0 or i: ";: A a VAL(INPUTS(

1)). IF A (0 OR A) I THEN PRINT A ES GOTO 960

970 WRITE01, A
980 NEXT
990 CLOSE 02
1000
.010 'same for currency dates..

1020 WRZTE*1, "CURRENCIES"

1030 'open curr event name tile as 2

1040 GOSUB 4160

1050 FOR I = I TO 10
1060 PRINT MID.SCRNS

1070 PRINT"Enter the date " EVENTS(I) " Last accomplished

. ..

. S.________

55

or 0 for none:
1080 GOSUB 5630

1090 WRITE*l, DATE
1100 NEXT

1110 CLOSE 02
1120 1

1130 'open activity definiton file.
1140 GOSUB 4200
1150 A = 1. N a 0: MAX.M a 10

1160 GOSUB 1920

1170 'save max number activites...
1180 MAX.N a N

1190
1200 'entries complete, sort them...
1210 GOSUB 4890

1220 'then check for conflicts...

1230 GOSUE 5070

1240 'print to file...
1250 WRITE*1, "ACTIVITIES SCHEDULED.", MAX.N
1260 FOR I a 1 TO MAX.N: PRINT#1, ACTS(I): NEXT

1270 CLOSE

1280 RETURN

1290

1300
1310 'lhananor addtoexistinqpilot data files/

1320
1330 'get and check pilot number...

1340 GOSUB 1730
1350
1360 'read file into memory...
1370 GOSUB 3550

1380 PRINT MID.SCRNS CVI(PS(NUM,1)) " - " PS(NUI,2) PS(NU

M,3) "...PS(NUM,4)

1390 PRINT: PRINT" Enter:"

1400 PRINT" 0 if no more changes or additions, a

11 done"
1410 PRINT" 1 to change admin data (name, rank,

SSAN)"
1420 PRINT" 2 to change qualification data"

1430 PRINT" 3 to update currency data"

1440 PRINT" 4 to add, chanqe or delete availabil

ity data"
1450 PRINT" Which choice? ": A a VAL(INPUTS()): PRINT

A
1460
1470 IF A a 0 THEN GOSUB 2900: RETURN

1480 IF A) 4 THEN PRINT"Error, enter 0 to 4 only, try ag

ain. ." .GOTO 1450

1490 ON A GOSUB 2580, 3130, 3230, 3330

1500 GOTO 1380
1510 '

1520

1540
15F0 'qet and check pilot number-

"I
i •

- -. , * ° 1530•. , 'o.-.o ___delet-e".- .. .opletepi.o d... _ file___________

,. , , ., ., . . ., . .'. ', _ - ": . . ." i

56
1560 COSUB 1730

1570 PRINT"Enter 0 to delete this file I to abort delete

act ion"
1580 INPUT"Which one"; D

1590 IF 0 () 0 THEN PRINT"Exiting delete mode, file NOT d

Selted...1: FOR I a 1 TO 1000: NEXT. COTO 1680
1600 OPEN "0", 3, TMP.FILS: CLOSE*3: COSUB 3030: KILL FIL

ENAES
1610 'reset key file ...

1620 GOSUD 4080
1630 LSET HIS = MKIS(NUM): LSET N2S - "Not in use": LSET
N3S .. " LSET N4S a .

1640 PUTOI, NUM
1650 CLOSE01

1660 'reset memory variables...

1670 PS(NUM,2) = "Not in use": PS(NUM,3) = . . PS(NUM,4
) I ** t

1680 RETURN
1690

1700 ' subroutines
1710
1720 'get and confirm pilot number...
1730 PRINT MID.SCRNS

1740 PRINT"Enter the last name or pilot number:"; INPUT"

", ANSWERS
1750 IF ASC(LEFTS(ANSWERS,1)) (58 THEN NUM a VAL(ANSWERS
): THIS.NUM a -1 ELSE HUM = 0: L.NAMES a ANSWERS

1760 'look for name match.
1770 WHILE HUM (MAX.PIL.NUM AND NOT THIS.NUM

1780 NUM a MUM + I
1790 IF L.NAMES = LEFTS(PS(NUM,2),LEN(L.NAMES)) T
HEN THIS.HUM a -1 ELSE THIS.NUM a 0

1800 WEND
1810 IF THIS.NUM a 0 THEN GOSUB 3890: PRINT PRINT"Enter

pilot number: "j: INPUT NUM

1820 IF MUM a 0 THEN GOTO 1890
1830 PRINT MID.SCRNS CVI(PS(NUM,1)) ' - " PS(NUM,Z) PS(NU

M,3) PS(NUM,4)
1840 PRINT"Enter 0 it this the correct entry; 1 if not co
rrect:";: THIS.NUM - VAL(INPUTS(i)): PRINT THIS HUM

1850 IF THIS.HUM 1 THEN THIS.MUM a 0 GOTO 1810
1860 IF THIS.NUM 0 0 THEN PRINT"Error, enter 0 or 1 only
. .": GOTO 1830
1870 'have correct number, get filenames.

1880 GOSUB 3810
1890 RETURN

1900

1910 'input a new activity...
1920 WHILE A

1930 N a N + I

1940 PRINT"Enter activity code (? for help) ",

1950 INPUT" ., CODES

1960 IF CODES a "?" THEN GOSUB 4450 ELSE IF CODES
z "0" THEN GOTO 2400

1970 ACT.CODE a VAL(CODES)

. .

57

1980 IF ACT.CODE I I OR ACT CODE > 255 THEN PRINT

"Entry is out of range...": COSUB 4450: GOTO 1970
1990 IF (ACT.CODE AND 63) a 63 THEN OTHER a -1 EL

SE OTHER a 0

2000 IF OTHER THEN INPUT"What is the activity nam

e? ", ACT.NAMES: GOTO 2060
2010 GET42, ACT CODE

2020 TRIMS a N22S

2030 GOSUB 2490

2040 ACT.NAMES a TRIMS

2050 4

2060 PRINT MID.SCRNS

2070 PRINT"Enter the date " ACT.NAMES " starts or

occurs on:"
2080 GOSUB 5630

2090 ACT.DATE a DATE: END.DATE = 0

2100 PRINT MID.SCRN$

2110 PRINT"Enter the scheduled time: ",

2120 INPUT TIMES: COSUB 5190

2130 IF OTHER THEN GOSUB 4690: GOTO 2230 ELSE IF

ACT.CODE * 62 OR ACT.CODE a 61 THEN GOSUB 4820: GOTO 2230

2140 'not other %nd not 61 or 62...

2150 PRINT MID.SCRNS

2160 PRINT" Enter:"

2170 PRINT" 0 if standard time offsets a

pply"

2180 PRINT" 1 to chanqe them"

2190 PRINT" Which choice? ";: AS = INPUTS(1) PR

INT AS.

2200 IF AS = "I" THEN GOSUN 4690: GOTO 2230

2210 IF AS "0" THEN PRINT ES: GOTO 2160

2220 START = CVI(N23S): END.T = CVI(N24S)

2230 ACT.ST.TIME a TIME - START: ACT.END.TIME = T

IME + END.T
2240 IF END.DATE a 0 THEN END.DATE a ACT.DATE

.250 ACT.LNS a STRINGS(25,32)

2260 MIDS(ACT.LNS,1,5) = STRS(ACT.CODE)

2270 MIDS(ACT.LNS,6,5) = STRS(ACT.DATE)

2280 MIDS(ACT.LNS,11,5) w STRS(ACT.ST.TIME)

2290 MIDS(ACT.LNS,16,5) a STRS(END.DATE)

2300 MIDS(ACT.LNS,21,S) a STRS(ACT.END.TIME)

2310 ACT.LN$ a ACT.LNS ACT.NAMES

2320 IF N)= MAX.N THEN COSUB 3740

2330 ACTS(N) m ACT.LNS

2340 PRINT MID.SCRNS " Check the activity d

at&

2350 PRINT N "." ACTS(N)

2360 PRINT CS,. A a VAL(INPUTS(l)): PRINT A

2370 IF A I t THEN GOTO 1940

2380 IF A 0 0 THEN PRINT ES: GOTO 2360

2390
2400 PRINT"Enter:'

2410 PRINT" 0 if entries complete"

2420 PRINT" I if more activities to enter"

2430 PRINT"Which one? "; A = VAL(INPUTS(l)): PRI

I tw

58
NT A

r. 2440 IT A (0 OR A > 1 THEN PRINT ES; OT0 2430

2450 WEND: 'activity entry loop.

2460 RETURN
2470
2480
2490 L a LEN(TRIMS) + I L.CHRS * CHRS(0)
2500 WHILE ASC(L.CHRS) (33
2510 L a L - 1
2520 L.CHRS * MIDS(TRIMS,L,I)
2530 WEND
2540 TRIMS a LEFTS(TRIMS,L)
25"50 RETURN
2560 6

2570 'chanao admin data...
2580 PRINT MID.SCRNS
2590 PRINT"Check the pilot data:"
2600 PRINT: PRINT"Pilot number assigned: "M NUMS
2610 PRINT: PRINT L.NAMES ", F.NAMES MIS ", " RANKS

SSANS
2620 PRINT: PRINT
2630 PRINT" Change which entry:"
2640 PRINT" 0 - no more changes, all correct"
2650 PRINT" I - name"

2660 PRINT" 2 - rank/grade"

2670 PRINT" 3 - SSAN"

2680 PRINT" 4 - change all entries"
2690 PRINT" Which one? "; : AIS a INPUTS(1): PRINT AIS
2700 IF At$ = "0" THEN OTO 2760
2710 IF VAL(AIS)) 4 THEN PRINT"Error, enter 0 to 4 only,

try again...": OT0 2690
2720 ON VAL(AIS) GOSUB 4270, 4360, 4400, 4Z50
2730
2740 'entries are correct, put in key file...
2750 'open key file...
2760 GOSUB 4080
2770 'and save key data...
2780 LSET NIS a MKIS(NUM)
2790 LSET N2$ a L.NAMES
2800 !NITS a LEFTS(F.NAMES,I) + LEFTS(MIS,I)
2810 LSET N3$ = INITS
2820 LSET N41 a RANKS
2830 PUTTl, NUM
2840 CLOSE01
2850 'put in memory array...
2860 P$(NUM,I) a MKIS(NUM): PS(NUM,2) a L.NAMES + STRINGS

(20-LEN(L.NAMES),32): PS(NUM,3) a INITS: PS(NUM,4) a RANKS

2870 RETURN
2880
2890 'put all data in Individual file (called from many r

outines)
2900 OPEN "0". 1, TMP.FILS
2910 WRITE01, NUMS
2920 WRITEPI, L.NAMES, F NAMES, MIS
2930 WRITE01, RANKS

% "

59

2940 WRITE0l, SSANS
2950 WRITE#1, QUAL.ID$

2960 FOR I = 1 TO IS: WRITE[1, OV(I): NEXT

2970 WRITE*1, CUR.ID$
2980 FOR I a I TO 10. RITE*1, CUR.DT(I): NEXT

2990 WRITE*#, ACT.IDS, MAX.N
3000 FOR I u 1 TO MAX.N: PRINT#1, ACTS(I): NEXT

3010 CLOSE
3020 'and rename files...

3030 ON ERROR COTO 3090

3040 KILL DAK.FILS

3050 ON ERROR GOTO 0
3060 NAME FILENAMES AS BAK.FILS

3070 NAME TIMP.FILS AS FILENAMES
3080 GOTO 3100
3090 IF ERR a 53 THEN RESUME 3050 ELSE COTO 3050

3100 RETURN
3110

3120 'change qual data...

3130 PRINT MID.SCRNS CVI(PS(NUM,I)) " - " PS(NUM,2) P$(NU
M,3) .. ".PS(NUM,4)

3140 FOR I = I TO 15: PRINT I TAB(6) QUALS(I) QV(I): NEXT

3150
3160 PRINT: PRINT"Enter 0 if all correct or qual number t

o change"

3170 PRINT"Which number (0-15)?";: INPUT ON

3180 IF ON = 0 THEN RETURN ELSE IF ON) 15 THEN PRINT"Err

or, a number from 0 to 15 only, try again...": GOTO 3170

3190 IF QV(QN) = I THEN QV(QN) = 0 ELSE QV(QN) a 1

3200 GOTO 3140

3210 1

3220 'update currency dates..

3230 PRINT MID.SCRNS CVI(PS(NUM,I)) "- PS(NUM,2) PS(NU
M,3) .. " PS(NUM,4)
3240 FOR I a 1 TO 10: PRINT I TAB(6) EVENTS(I) TAB(28) CU
R.DT(I): NEXT
3250 PRINT: PRINT"Enter 0 if correct or item number to ch

ange"

3260 PRINT"Which number (0-10)";: INPUT CN

3270 IF CN (0 THEN RETURN ELSE IF CN) 10 THEN PRINT"Er
ror, enter a number from 0 to 10 only, try again. .": GOTO 3

260

3280 PRINT"Enter the new currency date (accomplished date

)"oOSU 5630

3290 CUR.DT(CN) - DATE: COTO 3230
3300 'returns on zero entry above..

3310

3320 'add, change or delete availability data...

3330 PRINT MID.SCRNS CVI(PS(NUM,l)) " - " PS(NUM,2) PS(NU

M,3) "." P$(NUM,4)
3340 PRINT" Enter:"

3350 PRINT" 0 if activity changes completed"

3360 PRINT" I to add new ectivnties"

3370 PRINT" 2 to chane exis ti vities"

3380 PRINT" 3 to delete activities"

" "I. ,, i
- - ' % - ' , ' -

" +" " > , _' +. . - • " .

60

3390 PRINT" Which choice? ";: A u VAL(INPUTS(1)). PRINT

A
3400 IF A = 0 THEN RETURN ELSE IF A) 3 THEN PRINT"Error,

enter a number from 0 to 3 only, try again. .": GOTO 3390
3410 ON A GOSUB 3460, 3510, 3520

3420 GOTO 3330
3430 'return selected with zero response above...

3440
3450 'open def file, get activity entries...
3460 GOSUB 4200: PRINT MID..SCRNS; " N - MAX.N: A a 1: GOSU

B 1920: CLOSE*2: MAX.N = N

3470 'sort and check for conflicts...
3480 GOSUB 4890: GOSUB 5070

3490 RETURN
3500

3510 PRINT"Change not written yet ": DUMMY$ = INPUTS(l)
RETURN

3520 PRINT"Delet* not written yet ... " DUMMYS a INPUTS(l)
RETURN

3530
3540 'open data file and read into memory, close...

3550 OPEN "I", 2, FILENAMES
3560 INPUT *2, NUNS, L.NAMES, F.NAMES, MIS, RANKS, SIANS
3570 IF EOF(2) THEN GOTO 3700 ELSE INPUT#2, QUAL.IDS
3580 IF OUAL.IDS () "QUALIFICATIONS:" THEN PRINT"Qual dat
a not found":
3590 IF QV(0) (> -1 THEN ERASE OV. DIM QV(15)

3600 FOR I = 1 TO 15: IF EOF(2) THEN GOTO 3700 ELSE INPUT

02, QV(I): NEXT
3610 IF EOF(2) THEN GOTO 3700 ELSE INPUTI2, CUR.IDS
3620 IF CUR.IDS (> "CURRENCIES:" THEN PRINT"Cur data not
found":
3630 FOR I = I TO 10: IF EOF(2) THEN GOTO 3700 ELSE INPUT
*2, CUR.DT(I)i: NEXT
3640 IF EOF(2) THEN GOTO 3700 ELSE INPUT02, ACT. ID, MAX.
N
3650 IF ACT. ID () "ACTIVITIES SCHEDULED:" THEN PRIN T"Act
ivity data not found":
3660 FOR N = I TO MAX.N
3670 IF EOF(2) THEN PRINT"EOF before MAX.N..." MA
X.N N;: DUMMY$ a INPUTS(1): GOTO 3700
3680 LINE INPUT*2, ACTS(N)
3690 NEXT

3700 CLOSE02

3710 RETURN
3720
3730 'dynamic array size increase...
3740 IF TIPI(0) () CHRS(255) THEN ERASE IMPS: DIM TYPS(MA

X.N)
3750 FOR M a I TO MAX.N: TMPS(M) * ACTS(M): NEXT
3760 ERASE ACTS: DIM ACTS(MAX.N * 10)
3770 FOR M a I TO MAX.N: ACTS(M) - TMPS(M) NEXT
3780 MAX.N a MAX.N * 10

3790 RETURN

3800 'make pilnn.dat filenames.

. . . .

61

3810 NUMS a STRS(NUM)

3820 NUMS a MIDS(NUMS,Z)
3830 FILENAMES * "PIL" + NUMS * ".DAT"

3840 TMP.FILS - "PIL" + NUNS + ".SSS"
3850 SAK.FILS * "PIL" + HUMS + ".BAK"
3860 RETURN
3870

3880 'print all pilot names to screen...
3890 PRINT CLRS
3900 FOR I = I TO 20
3910 HUM = CVI(PS(,1)): L.NAMES = P$(1,2): INITS PS(I,
3): RANKS - P$(1,4)
3920 PRINT USING "**#"; MUM,: PRINT " - " LEFTS(L.NAMES,1

1) INITS " " RANKS;
3930 NUN CVI(PS(I 20,1)): L.NAMES a PS(120,2): "INITS

PS(1+20,3): RANKS. PS(1.20,4)

3940 PRINT TAB(27) USING "***", NUM;: PRINT " - " LEFTS(L

NAMES,11) INITS ... RANKS;
3950 HUM a CVI(PS(140,1)): L.NAMES = PS(1+40,2): INITS -

PS(1 40,3): RANKS a PS(1.40,4)
3960 PRINT TAB(53) USING "0#*"; MUM;: PRINT " - " LEFTS(L
.NAMES,11) INITS . RANKS
3970 NEXT
3980 RETURN

3990

4000 'qet pilot names from key file...
4010 FOR I a I TO MAX.PIL.NUM
4020 GETOI, I
4030 PS(I,1) a NIS: P$(1,2) a N2$: P$(1,3) = N35:

PS(1,4) a N4S
4040 NEXT
4050 RETURN
4060
4070 'open and field def files...

4080 OPEN "R", 1, "PILNAM.DEF", 27
4090 FIELDO1, 2 AS MIS, 20 AS N25, 2 AS N3S, 3 AS N4$

4100 RETURN
4110

4120 OPEN "R", 2, "QUAL.DEF", 22
4130 FIELD*2, 2 AS N21$, 20 AS N22S

4140 RETURN

4150
4160 OPEN "R", *2, "CUREVNT.DEF", 26
4170 FIELD*2, 2 AS N21e, 20 AS N22$, 2 AS N23$, 2 AS N24$

4180 RETURN
4190 '

4200 OPEN "R", 2, 'ACT.DEF", 46
421C FIELD*2, 2 AS N2IS, 20 AS N22S, 2 AS N235, 2 AS N246

10 AS H25$, 10 AS N26S

4220 RETURN
4230
4240 'correct all name area variables.

4250 FOR I a 1 TO 3: ON I GOSUB 4270, 4360, 4400 NEXT. R

ETURN
4260

62

4270 PRINT MID.SCRNS
4280 INPUT"What is the pilot's last name? ", L.NAMES
4290 PRINT MID.SCRNS
4300 INPUT"What is his first name? ", F.NAMES
4310 PRINT MID.SCRNS
4320 LINE INPUT"Enter his middle initial(s), 'Jr.', etc,
or 0 (zero) for none: ", MIS

4330 IF MIS - "0" THEN MIS .
4340 RETURN
4350
4360 PRINT MID.SCRNS
4370 INPUT"What is his rank/orade? ", RANKS

4380 RETURN
4390
4400 PRINT MID.SCRNS
4410 INPUT"What is his service number (SSAN)? ", SSANS
4420 RETURN
4430
4440 'read in activity codes and names, assumes def file
open as 2...
4450 PRINT"Select the desired activity category"
4460 PRINT" I for non-duty (leave, TDY, etc)"
4470 PRINT" 2 for non-flying duty activities"

4480 PRINT" 3 for flying activities"
4490 PRINT"Which category? ", A a VAL(INPUTS(1)). PRINT
A
4500 G? a (A - 1)*64
4510 FOR I = 1 TO 21
4520 GET02, I + GP
4530 ACT.CODE a CVI(N215)
4540 ACT.NAMES a N22$
4550 PRINT USING "**#"; ACT.CODE;: PRINT " - " ACT.NAME
S;
4560 GETS2, I + GP + 21
4570 ACT.CODE a CVI(N21S)
4580 ACT.NAMES = NZZS
4590 PRINT TAB(27) USING "##*"; ACT.CODE, . PRINT -

ACT.NAMES;
4600 GET02, I + GP + 42
4610 ACT.CODE a CVI(N21S)
4620 ACT.NAMES a N22$
4630 PRINT TAB(55) USING "#*0"; ACT.CODE;: PRINT " -

ACT.NAMES
4640 NEXT
4650 PRINT: PRINT"Jhich activity code?";: INPUT" ". CODES
4660 RETURN
4670
4680 'other, input start and end time offsets .
4690 PRINT MID.SCRNS
4700 PRINT"Enter the amount of time (hrs:min) needed prio
r to the scheduled"
4710 PRINT"activity time (e.a. travel time to a meeting o
r briefing time)"
4720 PRINT: PRINT"How much time? "; GOSUB 5450
4730 START a DUR

.
. ."

63
4740 PRINT MID.SCRNS
4750 PRINT"Enter the amount of time for the activity, inc
lude debriefing,
4760 PRINT"return travel, etc as applicable"
4770 PRINT: PRINT"How much time ? ";: GOSUB 5450
4780 END.T = OUR
4790 RETURN

4800
4810 'long duration activities--leave, tdy, etc..
4820 PRINT MID.SCRNS

4830 PRINT"What is the ending date of " ACT.NAMES
4840 GOSUB 5630
4850 END.DATE a DATE

4860 RETURN
4870

4880 'sort activities...
4890 SWAP. a -1: LAST a MAX.N - I
4900 WHILE SWAP.
4910 SWAP. a 0
4920 FOR I a 1 TO LAST
4930 SDI VAL(MIDS(ACTS(I),6,3)): STI = VAL(MIDS
(ACTS(I),11 5))
4940 S02 a VAL(MIDS(ACTS(I I),6,5)): ST2 = VAL(MI
-D (ACTS(.I),I1 ,5))
4950 IF (SOl > SD2) OR (SOI a SD2 AND STI > STZ)
THEN GOSUE 5000
4960 NEXT
4970 LAST a LAST - 1
4980 WEND
4990 RETURN
5000 TMP$ a ACTS(I+1)
5010 ACTS(I+1) a ACTS(I)
5020 ACTS(I) a TMPS
5030 SWAP. a -1
5040 RETURN
5050
5060 'conflict check, done after activities sorted by sta
rt...
5070 LAST a MAX.N - 1
5080 FOR I a 1 TO LAST
5090 EDI a VAL(MIDS(ACT$(I),16,5)): ETi = VAL(MID
S(ACTS(I),21,5))
5100 S02 VAL(MID$(ACTS(i1+),6,5)): ST2 a VAL(MI
D$ ACT$(I.1),1l,5>)
5110 '

3120 conflict is TRUE if first activity ends after secon
d starts...
5130 IF (EDI (SD2) OR (EDI S 502 AND ETI (ST2)
THEN CONFLICT a 0 ELSE CONFLICT * -l
5140 IF CONFLICT THEN PRINT"Conflict found with:"

PRINT ACTS(I): PRINT ACTS(Ii1)
5150 NEXT
5160 RETURN
5170
5180 'time of day validating routine

"2 .. ; .•'..2f °o') - . -° o . 5, 9...

64

5190 NT a 0

5200 TS a .".
3210 WHILE TS 0 ... AND NT (LEN(TIMES)

5220 NT = NT +.I
5230 TS a MIDS(TIMES,NT,I)
5240 WEND

5250 IF UT a 0 GOTO 5390

5260 IF HT = LEN(TIMES) THEN NT = LEN(TIMES) - 1 MIN - V
AL(RIGHTS(TIMES,2)) ELSE MIN a VAL(RIGHTS(TIMES,LEN(TIMES) -

NT))
5270 HR=VAL(LEFTS(TIMES,NT-1))

5280 BAD a 0
5290 IF MIN (0 OR MIN) 59 THEN BAD a -1

5300 IF HR (0 OR HR) 24 THEN BAD - -1
5310 TIME a HR*60 + MIN

5320 TI - CHRS(INT(HRIIO).48)

5330 IS a CHRS((HR MOD 10)+48)

5340 MS a CHRS(INT(MIN/10) 48)
5350 ES a CHRS((MIN MOD 10)+48)
5360 TIMES = TS + It + MS + ES
5370 IF BAD THEN PRINT"Time " TIMES not understood, pIe
ase re-enter:";: INPUT" , TIMES: GOTO 5190
5380 NT - 0: TS - ... I$ a .. : MS * ... ES B : DAD * 0:
HR a 0: MIN - 0

5390 RETURN

5400
5410
5420 --- This routine accepts an input of numbers until a

colon is keyed,
5430 ' then allows only two diqits up to a value of

60...
5440
5450 CKS .5460 DIGITS a INPUTS(1)

5470 IF ASC(DIGITS)(48 OR ASC(DIGITI)>58 THEN PRINT "Nume
rical diaits or colon (:) only, please re-enter: ",: GOTO 54

60
5480 CKS a CKS + DIGITS
5490 IF RIGHTS(CKS,1) 0 . THEN 5460
5500 HR a VAL(LEFTS(CK$,LEN(CKS)-1i))

5510 MIN$ u INPUTS(2)
5520 IF VAL(MINS)) 60 THEN PRINT "Max number of minutes

is 60, please re-enter: " GOTO 5510

5530 MIN - VAL(MINS)

5540 CKI - CKS + MIN$

50 PRINT: PRINT "The interval entered is: CKS ", is t

his correct'"
5!60 PRINT C$;: AS a INPUTS(1) PRINT AS

5570 IF At a "I" THEN PRINT"Re-enter interval from beginn

inq: " GOTO 5450
5580 IF AS 0 "0" THEN PRINT ES: GCTO 5560
5590 OUR a HR*60 * MIN

5600 RETURN

5610 '

5620

65
5630 IF MONTHICO) (> CHRS(255) THEN ERASE MONTHS

5640 DIM MONTHS(12)
5650 MONTHSU() a "JAM"
5660 MONTHS(2) a "FEB"
5670 MONTHS(3) , "MAR"
5680 MONTHS(4) a "APR"
5690 MONTHS(S) = "MAY"
5700 MONTHS(6) a "JUN"
5710 MONTHS(7) u "JUL"

3720 MONTHS(8) a "AUG"
5730 MONTHS(9) = "SEP"

5740 MONTHS(10) = "OCT"
5750 MONTHS(11) • "NOV"

5760 MONTHS(12) a "DEC"
5770
5780 IF FIRST.DAY(0) = 0 THEN ERASE FIRST.DAY

5790 DIM FIRST.DAY(12)

5800

5810 'reset FIRST.DAY(3..12) if correcting a date...
5820
3830 FIRST.DAY(1) w I

5840 FIRST.DAY(2) a 32
5850 FIRST.DAY(3) = 60

5860 FIRST.DAY(4) a 91
5870 FIRST.DAY(S) a 121

5880 FIRST.DAY(6) a 152
5890 FIRST.DAY(7) . 182
5900 FIRST.DAY(8) a 213

5910 FIRST.DAY(9) a 244
5920 FIRST.DAY(10) * 274
5930 FIRST.DAY(11) - 305

5940 FIRST.DAY(12) * 335
5950

5960 '--- get the date ---
5970
5980 INPUT"What is the date (Day Month Year>", DATES
5990 IF DATES a "0" THEN DATE * 0: RETURN

6000
6010 'put the date chars in individual variables...

6020
6030 IF DS(0) (> CHRS(255) THEN ERASE D1
6040 DIM DS(LEN(DATES))

6050 FIRST.DLMTR - 0
6060
6070 FOR I.V a I TO LEN(DATES)

6080 DS(I.V) a MIDS(DATES,I.V,1)
6090 IF FIRST.DLMTR <> 0 THEN 6180

6100 'if first delimiter not set, look for it; allow almo

st
6110 any char except letters or numbers to delimit...

6120 D * ASC(DSUI V))
6130 IF D (48 THEN DLMT a -1

6140 IF (D) 57 AND D (65) THEN DLMT a -1
6150 [F (D 90 AND 0 < 96) THEN DLMT a -1

6160 IF DLT THEN FIRST DLMTR a I V

. . .t

66

6170 DLMT u 0
6180 NEXT
6190
6200 'assume the last two chars are the year...
6210
6220 YEAR a VAL(RIGHTS(DATES,2))
6230
6240 'find the day...
6250 'if a delimiter was found then day zs the value
6260 before the delimiter, otherwise the day is either
6270 'the first character or the first two characters of
6280 'the string--assume the first two characters if the
6290 second character is not a letter
6300
6310 IF FIRST.DLMTR THEN DAY a VAL(LEFTS(DATES,FIRST.DLrT
R - I)) ELSE IF ASC(DS(2)) (58 THEN DAY a VAL(LEFTS DATES,2
)): FIRST.DL
MTR - 2 ELSE DAY = VAL(LEFTS(DATES,)): FIRST.DLMTR a I~6320

6330 'find the month ...
6340 lust look at three characters past the day or past
6350 the first delimiter

6360 - month could be a number or letters
6370 - convert lower case letters to upper

6380
6390 MONTHS=""
6400 MON.NUM a 0
6410 FOR I.V w 1 TO 3
6420 IF ASC(DS(FIRST.DLTRI.V)) (58 THEN MON.NU
M = -1

6430 IF ASC(D(FIRST.DLTRI.V))) 96 THEN DS(FIR
ST.DLMTR I.V) a CHRS(ASC(D$(FIRST.DLMTR I.V))-32)
6440 MONTHS a MONTHS + DS(FIRST.DLMTR+I.V)
6450 NEXT
6460
6470 'MONTHS is now a string of numbers or letters,
6480 ' MON.NUM is TRUE if it is numbers

6490
6500 IF MON.NUM THEN MONTHzVAL(LEFT%(MONTH$,Z)): GOTO 658
0
6510 FOR I.V = I TO 12
6520 FOR J.V • I TO 3
6530 IF MIDS(MONTHS,J.V,I) - MIDS(MONTHS(
I.V),J.V,I) THEN TEST a -1 ELSE TEST - 0
6540 IF NOT TEST COTO 6570. ' one not mat
ching is enough
6550 NEXT J.V
6560 IF TEST THEN MONTH a I V GOTO 6580: ' found
a match

6570 NEXT I.V
6580 IF MONTH (I OR MONTH) 12 THEN INPUT"Month not unde
rstood--enter the month as a one or two digit number (1-.12)
" MONTH: GO

TO 6580
6590

67
6600 'MONTH is now valid, set MONTHS if reqd...
6610

6620 IF MON.NUM THEN MONTHS a MONTHS(MONTH)
6630
6640 'check if this is a leap year.
6650
6660 IF YEAR/4 a INT(YEAR/4) THEN LEAP.YEAR - -1 ELSE LEA
P.YEAR a 0

6670
6680 'if so must increment first day values after
6690 ' February...

6700
6710 IF LEAP.YEAR THEN FOR I.V = 3 TO 12: FIRST.DAY(.V)
: FIRST.DAY(I.V) + 1: NEXT
6720
6730 'make sure the number of days is valid for the
6740 ' month
6750 compute max days in month...
6760 IF MONTH • 12 THEN MAX.DAYS a " 31" ELSE MAX.DAYS a

STRS(FIRST.DAY(MONTH + 1) - FIRST.DAY(MONTH))
6770 MAX.DAYS a MIDS(MAX.DAYS,2,2)
6780 ' then check range
6790 IF DAY (1 OR DAY) VALfMAX.DAYS) THEN PRINT "Day of
month not understood--input day as a number <1.." MAX.DAYS
":"; • INPUT"

DAY
6800

6810 'now put it together and see if correct...
6820
6830 DAYS - STRS(DAY): YRS a STRS(YEAR): DATES DAYS "
of + MONTHS YRS

6840 PRINT"The date entered is: "; DATES

6850 PRINT: PRINT CS;
6860 AS * INPUTS(1)
6870 IF AS * "1" THEN GOTO 5830: 'try again...
6880 IF AS) "0" THEN PRINT ES: COTO 6840
6890 1
6900 'date Is valid and checked correct, make the julian
6910 ' date...
6920 ' julian date form is year digit ' 1000 + juli
an date
6930
6940 DATE = VAL(RIGHTS(STRS(YEAR),1))*1000 + FIRSTDAY(MO
NTH) * DAY -1

6950
6960 'reset all variables not needed
6970
6980 ERASE DS
6990 YEAR a 0: MONTH = 0: DAY a 0. MON MUM a 0
7000 FIRST.DLMTR a 0: AS a .. : MAX.DAYS .
7010 DAYS * .. : MONTHS .. : YRS .
7020 RETURN
7030

I

!.,, '; . ' '';." .''."L ': "' '' " "" " " "' .i'' .. ''. ; . " . i" . . "" " .

68
100 '' SHELL. SET **W **w *a w*,~
t110 program dated 17 May 1983

120
130 This proqram allows entry of the schedule shell
140 data for a given week
150
160 variables required:
170 none
10
190 'returns:
200 SHELLnn.DAT files updated and in order
210
220 DEFINT A-Z
230 CLRS a CHRS(26): DOWNS a CHRS(10): ESC$ a CHRS(27)
240 MID.SCRNS = CLRS + STRINGS(6,10)
2S0 UPS a CHR$(11): MOV.LEFTS a CHRS(8): MOV.RICHTS * CH
RS(12)
260 HOMES a CHRS(30): CLR.LINES a ESCS + "T"
270 CS - "Enter 0 if correct, 1 to change it:
280 ES = "Error, enter 0 or 1 only, try again..."
290
300 MAX.PIL.NUM a 60
310 DIM PS(MAX.PIL.NUM,4)
320
330 'get pilot names...
340 GOSUU 3250
350 GOSUB 3180

360 CLOSE
370
380 PRINT MID.SCRNS " Enter:"
390 PRINT" 0 to quit, all done"
400 PRINT" 1 to add a new shell data file"
410 PRINT" 2 to change data in existing data fi
1 • "

420 PRINT" 3 to delete a shell data file"
430 PRINT" Which choice? ",;: SEL a VAL(INPUTS(l)): PRIM
T SEL
440 IF SEL (= 0 THEN END ELSE IF SEL) 3 THEN PRINT"Erro
r, enter a number 0 to 3 only, try again...": GOTO 430
450 PRINT MID.SCRNS "Enter the week starting date (Sunda

y) : "

460 GOSUI 4370
470 WK.DATE a DATE: WK.DATES - DATES
480 WK.NUM a (WK.DATE MOD 1000)\7: WK.NUMS a MIDS(STRS(W
K.NUM),2)
490 FILENAMES m "SHELL" + WK.NUMS + ".DAT"
500
510 ON SEL GOSUE 570, 1090, 1840

520 GOTO 380
530
540 '_newshell data
550
560 'check if file already exists..

570 ON ERROR GOTO 590
50 OPEN "1", 1, FILENAMES

69

590 IF ERR = 53 THEN RESUME 640

600 PRINT FILENAMES " exists on this disk, confirm you w
ant to overwrite (destroy) it"

610 PRINT: PRINT"Enter 0 to continue, i to NOT overwrite

this file: ";: AS a INPUTS(1). PRINT AS
620 IF AS a "1" GOTO 380
630 IF AS () "0" THEN PRINT ES: GOTO 610
640 ON ERROR GOTO 0
630 CLOSE
660
670 'open shell data file as 11...

680 GOSUB 2900

690
700 'open activity definiton file as O2...

710 GOSUB 3290
720

730 A u 1: N = 0: MAX.N = 10
740 WHILE A
7150 N . N + I
760 PRINT MID.SCRNS;
770 GOSUB 2280

780
790 PRINT"Enter:"
800 PRINT" 0 if entries complete"

810 PRINT" 1 if more activities to enter"
820 PRINT"Which one? ";: A a VAL(INPUTS(1)): PRI
T A
130 IF A (0 OR A) 1 THEN PRINT ES;: GOTO 820
840 'if greater than dimension of variable, then expand

it...
8S0 IF N .)= MAX.N THEN GOSUB 2970
860 ACTSCN) a ACT.LNS
870 WEND: 'activity entry loop..

880 'save max number activites..

890 MAX.N a N
900

910 'entries complete, sort them...

920 GOSUD 3710
930 'print to file...

940

950 FOR I a I TO MAX.N
960 LSET N9S a ACTS(I)
970 'make first word equal to record number...
980 LSET NiS a MKIS(l)
990 PUTSl, I
1000 NEXT

1010 'last entry is all 255 chars...
1020 LSET N91 - STRINGS(30,255): LSET N2$ a MKIS(32767):
PUTOI
1030 CLOSE
1040 RETURN

1050
1060

1070 ' _chanqe_or_add to_existinshell_data_files

1080

70

1090 PRINT MID.SCRNS K.DATES " - FILENAMES

1100 PRINT: PRINT" Enter:"
1110 PRINT" 0 if no more chanqes or additions, a
It done"
1120 PRINT" I to add activity data"
1130 PRINT" 2 to change activity data"

1140 PRINT" 3 to delete activity data"

1150 PRINT" Which choice? ";: A = VAL(INPUTS(I)): PRINT
A
1160
1170 IF A * 0 THEN RETURN

1180 IF A) 3 THEN PRINT ES: GOTO 1150
1190
1200 'open shell data file and act.code file...

1210 GOSUB 2900: GOSUB 3290

1220 A.T a 0: N * 0
1230 WHILE A.T 0 32767

1240 N a N + 1
1250 GET0I, N: SEQ.NUM a CVI(HIS)" A.T - CVI(N2S$: IF (N

SSEO.NUM) AND (N (> -1) THEN PRIT"Error in " FILENAMES

record" N "n
ot equal to sequence number" SEQ.NUM

1260 WEND
1270 MAI.N a N

1280

1290 ON A GOSUD 1330, 1670, 1840
1300 CLOSE: GOTO 1090

1310

1320 'add a new activity to shell data fil..
1330 N a MAX.N- GOSUB 280: MAX N a N
1340 DATA.TIME a -t
1350 WHILE DATA.TIME (a ACT.SCHED TIME
1360 K aK + 1
1370 GET41, K: DATA-TIME a CVI(N2t)

1380 WEND
1390 'Ok is first record) than activity to insert...
1400 MEN a FRE(O): IF MEM ((MAX.N - K * I)*32 THEN PRINT
"Not enough memory, movinq one record at a time.. ": GOTO 15

40
1410 IF ACTS(0) () CHRS(255) THEN ERASE ACTS: DIM ACTS(MA
X.N + 1 - K)
1420 FOR M = K TO MAX.N
1430 GET41, M

1440 ACT$(M - K + 1) = N96

1450 NEXT
1460 LSET N95 = ACT.LNS: LSET NIS a MKIS(K)
1470 PUT01, K
1480 FOR M a K + I TO MAX.N + I
1490 LSET N9S a ACTS(M - K)

1500 LSET NIS a MKIS(M)

1510 PUT*I, M
1520 NEXT
1530 GOTO 1640
1540 GET01, K: TMPIS a N91

1550 LSET N9$ a ACT.LNS LSET NIS a MKIS(K)

71
1560 PUT0i, K

1570 FOR M = K + I TO MAX.N
1580 GET01, M: TMP25 = N9$
1590 LSET N96 = TMPIS: LSET N1$ - M
1600 PUT#l, K
1610 TMPIS - TIP2$
1620 NEXT
1630 LSET N9$ a TMPIS: PUT41
1640 MAX.N s MAX.N + I
1650 RETURN
1660
1670 PRINT MD.SCRN$ "Enter the sequence number to change
or (? for-help) :";

1680 INPUT" , AS
1690 IF A "$ " THEN GOSUB 1970 ELSE N a VAL(AS)
1700 IF N 1 OR N) MAX.N THEN PRINT"Out of ranqe...": C

OSUB 1970
1710 'good sequence number entered...

1720 CET*l, N

1730 SEQ.NUM = CVI(NIS): ACT.SCHED.TIME = CVI(NZS): ACT C
ODE a ASC(N3$): PIL.NUM a ASC(N4$): ACT ST.TIME a CVI(NS$)
ACT. END. TIME

a CVI(N6$): ACT.NAMES , N7$
1740 PRINT MID.SCRN$ SEQ.NUM; (ACT.SCHED.TIME MOD 1440);
ACT. NAMES

1750 PRINT"Enter 0 if this is the correct activity, I to

search further: ";

1760 A = VAL(INPUT$IC)): PRINT A

1770 IF A .= 1 THEN GOTO 1670 ELSL IF A () 0 THEN PRINT ES

GOTO 1750

1780
1790 'add activity entry...

1800 A a I
1810 GOSUB 2280

1820 RETURN
1830

.840 PRINT"Delete not written yet...". RETURN

1850
1860 ' deltcomplete_shell_data file

1870
1880 PRINT MID.SCRNS WK.DATES FILENAMES
1890 PRINT-Enter 0 to delete this file, 1 to abort delete

action"

1900 INPUT"Which one" ; D
1910 IF D (0 0 THEN PRINT"Exiting delete mode, f&le NOT d
eleted...": FOR I I 1 TO 1000: NEXT: GOTO 1920

1920 RETURN
1930

1940 '_subroutines

1950
1960 'display shell file 20 lines at a time ,
1970 M a 1: A.T a 0

1980 WHILE A.T 0 32767
N' 1990 GET#%, M: S.N a CVI(NI$) A T a CV:(N2$): A.C * ASC(

SN3$): P.N - ASC(N4$): S.T a CVI(NVI): E.T *CVliN6S. " A N$

.

72
N7 S
2000 IT A.T () 32767 THEN PRINT S.N A.T A C P.N S.T E.T A

2010 M M + 1
2020 IF M MOD 20 - I THEN PRINT"Press (RETURN> to continu
e or sequence number if found";: INPUT" ", AS: IF AS u .. T
HEN GOTO 206

0 ELSE N a VAL(AS): GOTO 2050

, 2030 WEND
2040 PRINT"At end of shell data file for " WK.DATES ",

FILENAMES: PRINT: PRINT"Press (RETURN> to start over or sequ

ence number
found:";: INPUT" ", AS: IF AS .. THEN GOTO 1970 ELSE N - V

AL(AS): GOTO 2050

2050 RETURN
2060 PRINT UPS CLR.LINES;: GOTO 1980

2070

2080 'get and confirm pilot number.
2090 PRINT MID.SCRNS;

2100 PRINT"Enter the last name or pilot number:";: INPUT"

", ANSWERS
2110 IF ASC(LEFTS(AMSWERSI)) (58 THEN MUM a VAL(ANSWERS
): THIS.NUM a -I ELSE MUM a 0: L.NAMES a ANSWERS
2120 'look for name match...
2130 WHILE MUM (MAX.PIL NUM AND NOT THIS MUM
2140 MUM a MUM * I
2150 IF L.NAMES a LEFTS(PS(NUM,2),LEN(L.NAMES)) T
HEN THIS.NUM a -1 ELSE THIS.MUM a 0
2160 WEND
2170 IF THIS NUM u 0 THEN GOSUI 3060 PRINT PRINT"Enter
pilot number: ,: INPUT MUM
2180 IF MUM * 0 THEN GOTO 2250
2190 PRINT MID.SCRNS CVI(PS(NUM,)) - PS(NUM,2) PS(NU

M,3) "...PS(MUM,4)

2200 PRINT"Enter 0 if this the correct ontry; I if not co
rrect:";: THIS.NUM VAL(INPUTS(1)) PRINT THIS MUM

, 2210 IF THIS.MUM I 1 THEN THIS MUM a 0 GOTO 2170

2220 IF THIS.NUM () 0 THEN PRINT"Error, enter 0 or I only
*...I: GOTO 2190

2230 'have correct number...

2240 PIL.NUM a MUM

2250 RETURN
2260

2270 'input a new activity...
2280 PRINT"Enter activity code '? for help) ",
2290 INPUT" ", CODES
2300 IF CODES * "'" THEN GOSUB 3340 ELSE IF CODES a "0" T

HEN GOTO 2780
2310 ACT.CODE a VAL(CODES)
2320 IF ACT CODE (I OR ACT.CODE) 255 THEN PRINT"Entry i
s out of range.. ": GOSUB 3340- GOTO 2310

2330 IF (ACT.CODE AND 63) a 63 THEN OTHER a -1 ELSE OTHER
* 0

2340 IF OTHER THEN INPUT"What is the activity name' ", AC
T NAMES GOTO 2400

73

2350 GETOZ, ACT.CODE

2360 TRIMS a NZ22
2370 GOSUB 2810
2380 ACT NAMES a TRIMS

2390

2400 PRINT MID.SCRNS;
2410 PRINT" Enter the day ACT.NAMES " occurs on:"
2420 PRINT" 1 - Sunday"
2430 PRINT" 2 - Monday"

2440 PRINT" 3 - Tuesday"
2450 PRINT" 4 - Wednesday"

2460 PRINT" 5 - Thursday"

2470 PRINT" 6 - Friday"
2480 PRINT" 7 - Saturday"
2490 PRINT" Which day?";

2500 D a VAL(INPUTS(1))

2510 IF 0 (I OR D > 7 THEN PRINT"Error, enter a number I

to 7 only, try again...": OTO 2490
2520 PRINT MID.SCRNS;

2530 PRINT"Enter the scheduled time: ",

2540 INPUT TIMES: GOSUB 3920
2550 ACT.SCHED.TIME a (0-1)*1440 + TIME

2560 IF OTHER THEN GOSUB 3580: GOTO 2660
2570 'not other...
2580 PRINT MID.SCRNS;

2590 PRINT" Enter:"

2600 PRINT" 0 if standard time offsets apply"

2610 PRINT" 1 to change them"
2620 PRINT" Which choice? ";: AS a INPUTS(1) : PRINT AS

2630 IF AS u "1" THEN GOSUB 3580: GOTO 2660

2640 IF AS 0 "0" THEN PRINT ES: GOTO 2590

2650 START a CVI(N235): END.T = CVI(N24$)
2660 ACT.ST.TIXE a ACT.SCHED.TIME - START: ACT END TIME a

ACT.SCHED.TIME + END.T

2670 PRINT MID.SCRNS "Is a pilot already assigned to this
activity?"

2680 PRINT"Enter 0 if no pilot assigned or the pilot name

or number to specify which pilot. ";

2690 INPUT AS
2700 IF AS (> "0" THEN ANSWERS = AS: GOSUB 2110 ELSE PIL.
NUM 2 255
2710 ACT.LNS = STRINGS(30,0)

2720 MIDS(ACT.LNS,3,2) a MKIS(ACT SCHED TIME)

2730 MIDS(ACT.LNS,5,I) a CHRS(ACT CODE)

2740 MIDS(ACT.LNS,6,1) a CHRS(PIL.NUM)
2750 MIDS(ACT.LNS,7,2) a MKIS(ACT.ST.TIME)

2760 MIDS(ACT.LNS,9,2) a MKIS(ACT.ENO.TIME)
2770 M!DS(ACT.LNS,11) a ACT.NAMES

2780 RETURN
2790
2800 'trim trailing spaces...

2810 L a LEN(TRIMS) + 1: L.CHRS CHRS(0)

2820 WHILE ASC(L.CHRS) (33

2830 L a L - I
2840 L.CHRS * MIDS(TRIMS,L,I)

% '° b
' ' '

". ' " ' " . -' '-
.

' '" % . . " . ", " . ' -.

, ,' ,' ' ,' '. .' " ". " " ' ,, " - " .. . ".. . . . "']i• . " : . , -

74

2850 WEND
2860 TRIMS a LEFTS(TRIMS,L)
2870 RETURN
2880
2890 'open and field shell data file...
2900 OPEN "R", 1, FILENAMES, 30
2910 ' seq num act.sched.time act.code pil-num act
.st.time act.end.time act.name

2920 FIELD#1, 2 AS NlS, 2 AS N2S, I AS N36, 1 AS N4$, 2 A
S N56, 2 AS N6S, 20 AS N7S

2930 FIELD01, 30 AS N9S

2940 RETURN
2950

2960 'dynamic array size increase...
2970 MEN a FRE(0): IF MEM (320 THEN PRINT"Not enough fre
e memory, save this to disk and continue...": MEN a -I: RETU

RN
2980 IF TMPS(0) (> CHRS(255) THEN ERASE TMPS: DIM TMPS(MA
X N)

2990 FOR M I I TO MAX.N: TMPS(M) a ACTS(M): NEXT
3000 ERASE ACTS: DIM ACTS(MAX.N + 10)
3010 FOR M a I TO MAX.N: ACTS(M) a TMPS(M): NEXT
3020 MAX.N a MAX.N + 10
3030 RETURN
3040
3050 'print all pilot names to screen...
3060 PRINT CLRS
3070 FOR I a 1 TO 20
3080 NUN a CVI(PS(I,I)): L.NAMES = PS(1,2): INITS a PS(I,
3): RANKS a PI(1,4)
3090 PRINT USING "#00"; NUN;: PRINT " - " LEFTS(L.NAMES,1

1) INITS "...RANKS;

3100 HUM CVI(PS(I+20,1)): L.NAMES a P1(1+20,2): INITI a
PS(I20,3): RANKS a PS(1.20,4)

3110 PRINT TAB(27) USING "#40", NUN;: PRINT " - " LEFTS(L
NAMES,11) INITS "." R:-NKS;
3120 HUM a CVI.PS(+40,1)): L.NAMES a P$(1+40,2): INITS a
PS(1 40,3) RANKS = PS(1.40',4)

313C PRINT TAB(SS) USING "###"; NUN;: PRINT " - " LEFTS(L
NAMES,11I) INITS "." RANKS

3140 ,'E XT
3150 RETURN
3160

3170 'get pilot names from key file .
3180 FOR I a I TO MAX.PIL.NUM

3190 GETPI, I
3200 PS(I,1) a NIS PS(1,2) a NZS P$(1,3) N31:
PS(I.4) a N41

3210 NEXT

3220 RETURN
3230
3240 'open and field def files
3250 OPEN "R", I, "PILNAM DEF", 27
3260 FIELDOI, 2 AS NIS, 20 AS N25, 2 AS N3S, 3 AS N41
3270 RETURN

75

3280

3Z90 OPEN "R", 2, "ACT.DEF", 46
3300 FIELD#2, 2 AS N2IS, 20 AS NZ2S, 2 AS NZ35, 2 AS NZ4S

, 10 AS N25S, 10 AS N26S
3310 RETURN

3320

3330 'read in activity codes and names, assumes def file

open as #2..
3340 PRINT"Select the desired activity category"
3350 PRINT" I for non-duty (leave, TDY, etc)"

3360 PRINT" 2 for non-flying duty activities"

3370 PRINT" 3 for flying activities"

3360 PRINT"Which category! "; A - VAL(INPUTS(1)) PRINT

A
3390 OP a (A - 1)*64

3400 FOR I - I TO 21

3410 GETO2, I + GP

3420 ACT.CODE a CVI(N2lS)

3430 ACT NAMES = N225

3440 PRINT USING "***"; ACT.CODE;- PRINT " - " ACT.NAME
5;

3450 GET02, I + OP + 21

3460 ACT.CODE - CVI(N21S)
3470 ACT.NAMES = N22$

3480 PRINT TAB(27) USING "C##"; ACT.COOE,: PRINT " -

ACT.NAMES;
3490 GET#Z, I + GP + 42

3500 ACT.CODE = CVI(N21S)

3510 ACT.NAMES - N22$
3520 PRINT TAB(55) USING "000"; ACT.CODE;- PRINT " -

ACT NAMES

3530 NEXT
3540 PRINT: PRINT"Which activity code?";: INPUT" , CODES
3550 RETURN

3560

3570 'other, input start and end time offsets...
3580 PRINT MID.SCRNS;

3590 PRINT"Enter the amount of time (hrs min) needed prio

r to the scheduled"

3600 PRINT"activity time (e.q. travel time to a meeting o

r briefing time)"

3610 PRINT- PRINT"How much time? "-: GOSUB 4190

3620 START a OUR

3630 PRINT MID.SCRNS;

3640 PRINT"Enter the amount of time for the activity, inc

lude debriefing, "

3650 PRINT"return travel, etc as applicable"
3660 PRINT: PRINT"How much time? ";: GOSUB 4190

3670 END T a OUR

3680 RETURN
3690

3700 'sort activities...

3710 SWAP a -1. LAST a MAX.N - I

3720 PRINT MID.SCRNS "Sorting";

3730 WHILE SWAP.

76

3740 SWAP. a 0
3750 FOR I a 1 TO LAST
3760 A.T1 a CVI(MIDS(ACTS(1),3,2))

3770 A.T2 a CVIMIDS(ACTU(4+),3,2))
3780 IF A.T1) A.TZ THEN GOSUE 3840

3790 NEXT

3800 LAST - LAST -

3810 PRINT

3820 WEND
3830 RETURN

3840 PRINT".";
3850 TMPS a ACTS(I+I)

3860 ACTS(I+l) a ACTS(I)

3870 ACTS(I) = TMPS
3880 SWAP. a -1

3890 RETURN

3900 4

3910 'time of day validating routine...

3920 NT = 0

3930 T S a "...

3940 WHILE TS () ":" AND NT (LEN(TZMES)
3950 NT a NT + 1

3960 TS a MIDI(TIMES,NT,I)
3970 WEND

3980 IF NT a 0 GOTO 4120
3990 IF NT a LEN(TIMES) THEN NT • LEN(TIMES) - 1: MIN • V
AL(RIGHTS(TIMES,2)) ELSE MIN = VAL(RIGHTS(TIMES,LEN(TIMES) -

NT))

4000 HR=VAL(LEFTS(TIMESNT-t))

4010 BAD a 0
4020 IF MIN (0 OR MIN) 59 THEN BAD = -1

4030 IF HR (0 OR HR) 24 THEN BAD = -1
4040 TIME a HR*60 + MIN

4050 TS = CHRS(HRN1,0+48)
4060 IS a CHRS(UHR MOD 10)+48)

4070 MS a CHRS(MIN\10+48)
4080 ES a CHRS((MIN MOD 10)+48)
4090 TIMES a TS + IS + MS + ES

4100 IF BAD THEN PRINT"Time " TIMES " not understood, pie

age re-enter:";: INPUT" ", TIMES: GOTO 3920
4110 NT a 0: TS * .. : IS = .. : MS a . : ES . " BAD * 0:

HR a 0: MIN a 0

4120 RETURN
41 30

4140
4150 --- This routine accepts an input of numbers until

4160 a colon is keyed, then allows only two
4170 ' digits up to a value of 60

4180
4190 CKS .
4200 DIGITS a INPUTS(I)
4210 IF ASC(DIGITS)<48 OR ASC(DIGITS))58 THEN PRINT "Nume
rical digits or colon (:) only, please re-enter ", GOTO 42

00

4220 CKS * CKS * DIGITS

mlb . . % • -..

77

4230 IF RIGHTS(CKS,l) (> . THEN 4200

4240 HR a VAL(LEFTS(CKS,LEN(CKS)-l))
4250 MIN = INPUTS(Z)
4260 IF VAL(MINS)) 60 THEN PRINT "Max number of minutes

is 60, please re-enter: " COTO 4250
4270 MIN a VAL(MINS)

4280 CKS = CKS + MINI

4290 PRINT PRINT "The interval entered is: CKS " is t

his corretc?"
4300 PRINT CS;: AS • INPUTS(t): PRINT AS

4310 IF AS = "1" THEN PRINT"Re-enter interval from beginn

inq: ": GOTO 4190
4320 IF AS) "0" THEN PRINT ES: GOTO 4300

4330 DUR = HR*60 + MIN
4340 RETURN

4350 ,
4360

4370 IF MONTHS(0) (> CHRS(255) THEN ERASE MONTHS
4380 DIM MONTHS(12)

4390 MONTHS() a "JAN"

4400 MONTHS(2) a "FEB"

4410 MONTHS(3) = "MAR"
4420 MONTHS(4) a "APR"

4430 MONTHS(S) u "MAY"
4440 MONTHS(6) a "JUN"

4450 MONTHS(7) a "JUL"

4460 MONTHS(8) = "AUG"
4470 MONTHS(9) = "SEP"

4480 MONTHS(10) a "OCT"

4490 MOTHS(11) = "NOV"

4500 MONTHS(12) a "DEC"

4510

4520 IF FIRST.DAY(0) a 0 THEN ERASE FIRST.DAY
4530 DIM FIRST.DAY(12)

4540

4550 'reset FIRST.DAY(3..12) if correcting a date...

4560

4570 FIRST.DAY(1) a 1
4580 FIRST.DAY(Z) a 32

4590 FIRST.DAY(3) a 60

4600 FIRST.DAY(4) a 91

4610 FIRST.DAY(5) a 121

4620 FIRST.DAY(6) a 152
4630 FIRST.DAY(7) a 182

4640 FIRST.DAY(8) . 213

4650 FIRST.DAY(9) a 244

4660 FIRST.DAY(10) a 274

4670 FIRST.DAY(11) a 305

4680 FIRST.DAY(12) a 335

4690
4700 '--- get the date ---

4710

4720 INPUT"What is the date <Day Month Year>", DATES

4730 IF DATES "0" THEN DATE 0 0: RETURN

4740

78

4750 'put the date chars in individual variables...
4760

4770 IF DS(0) (> CHRS(255) THEN ERASE DS
4780 DIM DS(LEN(DATES))
4790 FIRST.DLMTR a 0

4800

4810 FOR I.V = I TO LEN(DATES)

4820 DS(Z.V) a MIDS(DATES,I.V,I)

4830 IF FIRST.DLMTR 0 0 THEN 4930

4840 'if first delimiter not set, look for it; allow
4850 'almost any char except letters or numbers to

4860 'delimit...
4870 0 u ASC(DS(I.V))

4880 IF D (48 THEN DLMT - -1

4890 IF (D) 57 AND D (65) THEN DLT = -1

4900 IF (D) 90 AND 0 (96) THEN DLMT = -1

4910 IF DLMT THEN FIRST.DLMTR = I.V

4920 DLMT u 0
4930 NEXT

4940
4950 'assume the last two chars are the year..

4960
4970 YEAR a VAL(RIGHTS(DATES,Z))

4980
4990 'find the day...

5000 'if a delimiter was found then day is the value

5010 'before the delimiter, otherwise the day is either

5020 'the first character or the first two characters of

5030 'the stting--assum. the first two characters if the

5040 'second character is not a letter

5050
5060 IF FIRST.DLMTR THEN DAY = VAL(LEFTS(DATES,FIRST.DLMT

R - 1)) ELSE IF ASC(DS(2)) (58 THEN DAY = VAL(LEFTS(DATES,2

1): FIRST.DL
MTR - 2 ELSE DAY a VAL(LEFTS(DATES,I)): FIRST.DLMTR a 1
5070

5080 'find the month...

5090 'lust look at three characters past the day or past

5100 the first delimiter

5110 - month could be a number or letters

5120 - convert lower case letters to upper

5130

5140 MONTHS-""..

5150 MONNUM a 0
5160 FOR I.V = I TO 3

5170 IF ASC(D$(FIRST DLMTR+I.V)) (58 THEN MON.NU
M u -1
5180 IF ASC(D$(FIRST.DLMTR+I.V)) > 96 THEN D$(FIR
ST.DLMTR+I.V) * CHRS(ASC(DS(FIRST.DLMTR.I V))-32)

5190 MONTHS a MONTHS + DS(FIRST.DLMTR*I.V)
5200 NEXT

52 10 '

5220 'MONTHS is now a strinq of numbers or letters,

5230 ' MON.NUM is TRUE if it is numbers..

5240

'I
: '.4 5'"'" '" """ ',-"".,.-.,. .- .. . - -. ..-.- ... , . . :.: : - :, -

79

5250 IF MON.NUM THEN MONTH-VAL(LEFTI(MONTHS,2)): COTO 533

0
5260 FOR I.V a 1 TO 12

5270 FOR J.V * I TO 3
5280 IF MIDS(MONTHS,J.V,1) MIDS(MONTHS(

I.V),J.V,) THEN TEST a -1 ELSE TEST a 0
5290 IF NOT TEST GOTO 5320" ' one not mat
ching is enough
5300 NEXT J.V

5310 IF TEST THEN MONTH - I.V: GOTO 5330: ' found

a match

5320 NEXT I.V
5330 IF MONTH (1 OR MONTH) 12 THEN INPUT"Month not undo

rstood--enter the month as a one or two digit number (1..12>

" MONTH: GO
TO 5330

5340
5350 'MONTH is now valid, set MONTHS if reqd...

5360

5370 IF MON.NUM THEN MONTHS a MONTHS(MONTH)
5380

5390 'check if this is a leap year...
5400

5410 IF YEAR/4 , YEAR\4 THEN LEAP.YEAR , -1 ELSE LEAP.YEA

R z 0
5420
5430 'if so must increment first day values after

5440 February...
5450
5460 IF LEAPYEAR THEN FOR I.V - 3 TO 12: FIRST.DAY(I.V)

FIRST.DAY(I.V) + 1: NEXT
5470
5480 'make sure the number of days is valid for the month
5490 'first, compute max days in month...

5500 IF MONTH = 12 THEN MAX.DAYS , " 31" ELSE MAX.DAYS a

STRS(FIRST.DAY(MONTH + 1) - FIRST.DAY(MONTH))
5510 MAX.DAYS , MIDS(MAX.DAYS,2,2)
5520 ' then check range

5530 IF DAY (I OR DAY) VAL(MAX.DAYS THEN PRINT "Day of

month not understood--input day as . number (I.." MAXVDAYS
")"; : INPUT"
" DAY

5540
5550 'now put it together and see if correct

5560

5570 DAYS a STRS(DAY): YRS 1 STRS(YEAR): DATES DAYS "
+ MONTHS + YR$

41 5580 PRINT"The date entered is: "; DATES

5590 PRINT: PRINT CS;

5600 AS a INPUTS(1)
5610 IF AS n "I" THEN GOTO 4570: 'try again..
5620 IF AS () "0" THEN PRINT ES. GOTO 5580

5630

5640 'date is valid and checked correct, make the julian

5650 ' date..

or . *... .. "*. ". -

P. 1. 7K77 7-70 7

*i 80
n5660 ulian date form is year digit * 1000 + juli

-. '. an date

5670
5680 DATE a VAL(RIGHT$(STRS(YEAR),j))*l000 + FIRST.DAY(MO

NTH) DAY -1

5690
5700 'reset all variables not needed
5710
5720 ERASE D$

5730 YEAR a 0: MONTH , 0: DAY m 0: MON.NUM - 0

5740 FIRST.DLMTR = 0: AS u .: MAX.DAYS -
5750 DAYS M "N: MONTHS .. YRS .
5760 RETURN

5770

r.

p.

2'"

* , *.* *.* - , -, ,. : , '.- .,- .. ':*. . " -,-- -- .-. . - .- -. . • . . -', . -. - ., .'-. -

81
too0 WKDAT.SET
t0 'program dated 17 May 1983

120
130 'This proqram reads all pilnn.dat files and sets
140 the weekly data in WKnn.DAT

150

160 'variables required:
170 none
180

190 returns-

200 WKnn.DAT file
210
220 DEFINT A-Z

230 CLRS z CHRS(26): DOWNS a CHRS(L0): ESC$ = CHRS(27)
240 MID.SCRNS a CLRS + STRINGS(8,10)

250 UPS a CHRS(11): MOV.LEFT$ a CHRS(S): MOV.RIGHTS z CH

R$(12)
260 HOMES a CHRS(30): CLR.LINES a ESCS + T

270 'set avail period constants...

280 PERIOD.ST.TIME a 0: PERIOD.DUR = 10080: INCR • 30
290 'char positions of date/time in actS...
300 SD a 6: ST a 11: ED a 16: ET a 21
310 'fndt.tim pulls the substring value from acts

320 DEF FNDT.TIM(NL,P) = VAL(MIDS(ACTS(NL),P,5))
330
340 CS = "Enter. 0 if correct, I to change it:

350 ES a "Error, enter 0 or I only, try again..."

360
370 MAX.PIL.NUM a 60
380 IF P$(0,0) 0 CHR$(255) THEN ERASE PS: DIM P$(MAX.PI
L.NUM,4)
390 IF QUAL$(0) (> CHR$(255) THEN ERASE QUALS: DIM QUAL$
(15)

400
410 'open and field def files...

420 OPEN "R", 1, "PILNAM.DEF", 27
430 pil.num: I nameS: InitS: rankS:
440 FIELD*I, 2 AS Nl6, 20 AS N2S, 2 AS N3$, 3 AS N4$
4!0
460 PRINT MID.SCRNS "Enter the week starting date (Sunda
y):

470 GOSUB 1730
480 WK.DATE = DATE: WK.DATES a DATES: WK.NUM = (WK.DATE
MOD 1000)\7: WK.NUM$ = MIDS(STRS(WK.NUM),2)
490 PRINT"The week number is " WK.NUMS

500
510 OPEN "R", 2, "WK" + WK.NU$ + " DAT", 93
520 ' pil.num: availS: cur.dtS qual

netlnlt:
530 FIELD02, I AS N215, 47 AS N22$, 20 AS N23S, 2 AS N24

S , 28 AS N25S
540 FIELD02, 93 AS N2AS

550

560 FOR PIL.NUM a I TO MAX.PIL.NUM
570 FOR I = I TO 7: NET(I) -1 NLT(I) a -1 NE

- - -

82

IT
380 GET*1, PIL.NUM
590 NUM - CVI(N1S): TRIMS - NZs: GOSUB 1460 L.N
AMES a TRIMS: INITS a N3S: RANKS u N4$
600 PRINT"Getting data on RANKS ... L.NAMES ",

INITS
610 IF MUM () PIL.NUM THEN PRINT"File error rec
ord number not equal to pilot number" PRINT"Press any key t
o continue..

*";: DUMMYS INPUT6(l)
620 NUMS a MID$(STRS(NUM),2)
630
640 NO.FILE a 0
650 ON ERROR GOTO 680
660 FILENAMES a "PIL" + NUMS + .DAT"
670 OPEN "1", 3, FILENAMES
680 IF ERR a 53 THEN NO.TILE a -1: PRINT FILEN[AM
ES " not found, going to nezt number...": RESUME 690
690 ON ERROR GOTO 0
700 IF NO.FILE THEN LSET NZAS STRINGS(93,0): L

SET N21S a CHRS(PIL.NUM): GOTO 1280
710
720 'read in pilot data file...
730 GOSUB 1550
740 'close pilot data file...
750 CLOSE03
760
770 'make data for each week data record field...
780 LSET N21$ a CHRS(NUM)
790
Soo AVAILS STRINGS(42,255)
810 FOR N - I TO MAX.N
820 ACT.CODE = VAL(LEFTS(ACTS(N),5))
830 ACT.ST.DATE a FNDT.TIM(N,SD)
840 ACT.ST.TIME a FNDT.TIM(N,ST)
850 ACT.END.DATE a FNDT.TIM(N,ED)
860 ACT.END.TIME a FNDT.?IM(N,ET)
870
Sao 'compute times in minutes from week beginning...
890
900 IF ACT.ST.DATE - WK.DATE) 7 THEN ST
ART.TIME a 32767 ELSE IF ACT.ST.DATE - WK.DATE (-7 THEN STA
RT TIME a -1
0080 ELSE START.TIME a (ACT.ST.DATE - WK.DATE)*1440 + ACT.ST
TIME
910 IF ACT.END.DATE - WK.DATE > 7 THEN E
NDTIME a 32767 ELSE IF ACT.END.DATE - WK DATE (-7 THEN END
TIME -100

80 ELSE END.TIME a (ACT.END.DATE - WK.DATE)*1440 + ACT.END.T
IME
920 'Set defined FALSE, just check activity times
930 AVAILs-1 SETsO
940 GOSUB 3380
950 IF NOT AVAIL THEN PRINT"Conflict in
activity" N CHRS(8) ", not set. ."

. 1

83
960 IF (ACT.CODE AND 192) 0 0 TREN GOSU

, 5150 ELSE C.REST a -1
970 IF C.REST THEN GOTO 1030
980 PRINT"Activity" N "-"ACTS(N) does n

at meet crew rest constraints..."
990 PRINT"Enter: 0 to ignore crew rest,

I to NOT set this activity: "
1000 AS a INPUTS(l): PRINT AS

1010 IF AS = "1" THEN GOTO 1040 ELSE IF A

S (> "0" THEN PRINT ES: COTO 980

1020 'set defined TRUE, set this activity in availS...
1030 AVAIL a -1: SET = -1" COSUB 3810

1040 NEXT: 'activity for this pilot number...

1050 LSET N22$ - AVAILS

1060
1070 CUR.DTS .

1080 FOR N = I TO 10

1090 CUR.DTS - CUR.DT$ MKIS(CUR.DT(N))
1100 NEXT: 'currency event date...

1110 LSET N23S - CUR.DTS

1120

1130 QUAL = 0

1140 FOR N I I TO 15

1150 IF QV(N) THEN QUAL a QUAL * 2'(N-1)
1160 NEXT: 'qualification...

1170 LSET N24% a MKIS(QUAL)~1180o

1190 'initialize all NET and NLT times as -1 values...

1200 NET.NLTS a STRINGS(28,255)

1210 FOR N = 1 TO 7

1220 IF NET(N) (> -1 THEN MIDS(NET.NLTS,N

*4 - 3,2) a MKIS(NET(N))

1230 IF NLT(N) () -1 THEN MIDS(NET.NLTS,N

'4 - 1,2) a MKIS(NLT(N))

1240 NEXT
1250 LSET N255 = NET.NLTS

1260
1270 'save all data in buffer to this pilot number record

1280 PUT*2, FIL.NUM
1290 NEXT. 'pilot number...

1300
1310 'last record, save the date (julian number and strin
g form)

1320 tec.num: wk.date: wk.dateS not use
d"

1330 FIELD02, 1 AS N221S, 2 AS N222$, 9 AS N223S, 81 AS N

224S

1340 LSET N2215 u CHRS(MAX.PIL.NUM + 1)

1350 LSET NZ22 a KIS(WK.DATE)

1360 LSET N223$ a WK DATES

1370 LSET N224S a STRING$(81,0)
1380 PUT02, MAX PIL NUM + 1

1390
1400 'all pilot data for the week now in one file

1410 PRINT"WK" WK.NUMS ".DAT file now completed. '

.... e........

, . .; . . . ". ' .W. -
-

. . " .o 1.. , , -; -.. . ,. .- . - - -, . - : ; . . . |

84

1420 END
1430 6
1440 '__subroutines

1450
146" L a LEN(TRIMS) 1: L.CHRS CHRS(0)
1470 WHILE ASC(L.CHRS) (33
1480 L a L - I
1490 L.CHRS a MIDS(TRIMS,L,1)
1500 WEND
1510 TRIMS a LEFTS(TRIMS,L)
1520 RETURN
1530
1540 'open data file and read into memory, close...
1550 INPUT *3, NUMS, L.NAMES, F.NAMES, MIS, RANKS, SSANS
1560 IF EOF(3) THEN GOTO 1690 ELSE INPUT03, QUAL.IDS
1570 IF QUAL.IDS () "QUALIFICATIONS:" THEN PRINT"Qual dat
a not found":
1580 IF QV(0) () -1 THEN ERASE QV: DIM QV(15)
1590 FOR I = TO 1S: IF EOF(3) THEN COTO 1680 ELSE INPUT
03, QV(I): NEXT
1600 IF EOF(3) THEN COTO 1680 ELSE INPUT03, CUR. IS
1610 IF CUR.IDS 0 "CURRENCIES:" THEN PRINT"Cur data not
found":
1620 FOR I a I TO 10: IF EOF(3) THEN GOTO 1680 ELSE INPUT
33, CUR.DT(I)" NEXT
1630 IF EOF(3) THEN GOTO 1680 ELSE INPUT*3, ACT.ID$, MAX.
N
1640 IF ACT.IDS () "ACTIVITIES SCHEDULED:" THEN PRINT"Act
ivity data not found":
1650 FOR N 1 TO MAX.N
1660 IF EOF(3) THEN PRINT"EOF before MAX.N..." MA
X.N N;: DUMMYS INPUTS(1): COTO 1680
1670 LINE INPUT*3, ACTS(N)
1680 NEXT
1690 RETURN
1700

1710 '
1720
1730 IF MONTHS(0).() CHRS(255) THEN ERASE MONTHS
1740 DIM MONTHS(12)
1750 MONTHS(1) a "JAN"
1760 MONTHS(2) a "FEB"
1770 MONTHS(3) = "MAR"
1780 MONTHS(4) a "APR"
1790 MONTHS(4) a "MAY"
1800 MONTHS(6) a "JUN'
1810 MONTHS(7) a "JUL"
1820 MCNTHI (8) a "AUG"
1830 MONTHS(9) a "SEP"
1840 MONTHS(10 a "OCT"
1850 MONTHS(1I) a "NOV"

1860 MONTHS(12) a "DEC"
1870 1
1880 IF FIRST.DAY(0) a 0 THEN ERASE FIRST.DAY
1890 DIM FIRST.DAY(12)

N

". , *' . " . , .. ,.~.',' .. " ,. . . ,,,,, ", ., . . - -", ." ,,,, , . , ., - ,. . . " ,

85

1900
1910 'reset FiRST.DAY(3..12) if correcting a date...

1920

1930 FIRST DAY(l) a 1
1940 FIRST.DAYZ) a 32
1950 FIRST.DAY(3) a 60

1960 FIRST.DAY(4) = 91
1970 FIRST.DAY(S) a 121
1980 FIRST.DAY(6) a 152

1990 FIRST.DAY(7) = 182

2000 FIRST.DAY(8) a 213
2010 FIRST.DAY(9) a 244

2020 FIRST.DAY(10) a 274
2030 FIRST.DAY(11) a 305

2040 FIRST.DAY(12) a 335

2050
2060 '--- get the date ---

2070
2080 INPUT"What is the date <Day Month Year>", DATES
2090 IF DATES a "0" THEN DATE = 0: RETURN
2100
2110 'put the date chars in individual variables...

2120 1

2130 IF DS(0) () CHRS(255) THEN ERASE DS
2140 DIM DS(LEN(DATES))
2150 FIRST.DLMTR a 0
2160

2170 FOR I.V a 1 TO LEN(DATES)

2180 DS(I.V) a MIDS(DATES,t.V,I)
2190 IF FIRST.DLMTR () 0 THEN 2290
2200 'if first delimiter not set, look for it; allow

2210 'almost any char except letters or numbers to
2Z20 'delimit.
2230 D ASC(D(I.V))

2240 IF D (48 THEN DLMT * -1
2250 IF (0 > 57 AND D (65) THEN DLMT a -1

2260 IF (D > 90 AND D < 96) THEN DLMT a -1
2270 IF DLMT THEN FIRST DLMTR a I.V
2280 DLMT a 0
2290 NEXT
2300
2310 'assume the last two chars are the year

2320
23.30 YEAR a VAL(RIGHTS(DATES,2))

2340
2350 'find the day...

2360 'if a delimiter was found then day is tie value

2370 'before the delimiter, otherwise the day is either

2380 'the first character or the first two characters of

2390 'the string--assume the first two characters if the

2400 'second character is not a letter
2410

2420 IF FIRST DLMTR THEN DAY z VAL(LEFTS(DATES,FIRST.DLMT
R - 1)) ELSE IF ASC(DS(2)) 5 58 THEN DAY - VAL(LEFTS(DATES,2
)): FIRST.DL

lei

* .*,- - -. - -

86

MTR = 2 ELSE DAY = VAL(LEFTS(DATES,1)) FIRST.DLMTR = I

2430
2440 'find the month...

2450 'ust look at three characters past the day or past
2460 'the first delimiter

2470 - month could be a number or letters
2480 - convert lower case letters to upper

2490
2500 MONTHS-".

2510 MONNUM a 0

2520 FOR I.V = I TO 3
2530 IF ASC(DS(FIRST.DLMTR+I.V)) < 58 THEN MON.NU
M a -1

2540 IF ASC(DS(FIRST.DLMTR I.V)) > 96 THEN De(FIR
ST.DLMTR I.V) - CHRS(ASC(DS(FIRST.DLTR I.V))-32)
2550 MONTHS = MONTHS + DS(FIRST.DLMTR+I.V)

2560 NEXT
2570

2580 'MONTHS is now a strinq of numbers or letters,
2590 ' MONNUM is TRUE if it is numbers

2600
2610 IF MON.NUM THEN MONTH=VAL(LEFTS(MONTH$,2))- GOTO 269
0
2620 FOR I.V a I TO 12
2630 FOR J.V = 1 TO 3
2640 IF MIDS(MONTHS,J.V,I) = MIDS(MONTHS(
I.V),J.V,I) THEN TEST a -1 ELSE TEST w 0
2650 IF NOT TEST GOTO 2680: ' one not mat
ching is enough
2660 NEXT J.V
2670 IF TEST THEN MONTH = I.V: GOTO 2690: ' found
a match

2680 NEXT I.V
2690 IF MONTH (I OR MONTH) 12 THEN INPUT"Month not unde
rstood--enter the month as a one or two digit number (1.-.12)
", MONTH: GO

TO 2690

2700
2710 'MONTH is now valid, set MONTHS if reqd...

2720
2730 IF MONNUM THEN MONTHS a MONTHS(MONTH)
2740
2750 'check if this is a leap year..

2760 1

2770 IF YEAR/4 a YEAR\4 THEN LEAP.YEAR a -1 ELSE LEAP.YEA
Ra0
2780
2790 'if so aust increment first day values after

2800 ' February...

2810

2820 IF LEAPYEAR THEN FOR I.V a 3 TO 12. FIRST DAY(I.V)
a FIRST.DAY(I.V) + 1: NEXT
2830
2840 'make sure the number of days is valid for the month

2850 'first, compute max days in month.

87

2860 IF MONTH u 12 THEN MAX.DAYS = " 31" ELSE MAX.DAYS .

STRS(FIR'T DAY(MONTH * 1) - FIRST DAY(MONTH))
2870 ,lAX.DAYS = MIDS(MAX.DAYS,2,2)

2880 'then check range

2890 IF DAY (I OR DAY) VAL(MAX DAYS) THEN PRINT "Day of

month not understood--input day as a number <1 ." MAX DAYS

"" : INPUT"
DAY

2900
2910 'now put it together and see if correct...
2920 1

2930 DAYS = MIDS(STRS(DAY),2): YRS = STRS(YEAR): DATES
DAYS MONTHS + YRS

2940 PRINT"The date entered is: " DATES
2950 PRINT: PRINT CS,
2960 AS a INPUTS(1)
2970 IF AS * "l" THEN COTO 1930- 'try again...
2980 IF AS 0 "0" THEN PRINT ES: COTO 2940
2990
3000 'date is valid and checked correct, make the julian

3010 ' date. Julian date form is
3020 ' year digit * 1000 + julian date

3030
3040 DATE - VAL(RIGHTS(STRS(YEAR),I))*l000 + FIRST DAY(MO

NTH) * DAY -1
3050
3060 'reset all variables not needed

3070
3080 ERASE OS
3090 YEAR a 0: MONTH a 0: DAY a 0: MONNUM = 0
3100 FIRST.DLMTR a 0 AS a .. MAX DAYS .

3110 DAYS • .. MONTHS z .. YRS =

3120 RETURN

3130

3140 '*** CASE ,',
3150 'module dated 24 April 1983

3160
3170 'This module includes subroutines called by other

3180 'modules in determining the case of each activity

3190 'relative to the week

3200
3210 'variables rquired:

3220 PERIOD.STTIME as 4n integer in minutes or o
thor time units
3230 ' PERIOD.DUR as an integer length of period
3240 ' INCR as an integer for the value of each bit

(resolution)
3250 ' START.TIME as values for the activity

3260 ' END.TIME

3270 ' AVAILS as a bit string with '1' available.

0' not avail
3280 ' AVAIL as a control code

3290 ' SET as a control code to set the time 'not a

vailable'

3300

' ' % ' ' ' .' ".J5'. .- .-. '..! . "-.' . ' - .-. .'. " " ' - " .. Si . - . -. . . . * .-

88
3310 returns:
3320 AVAIL as TRUE if time is available
3330 AVAILS updated if AVAIL and SET both TRUE
3340
3350 subroutines used:

3360 all internal

3370
3380 GOSUB 3600
3390 GOSUB 3810

3400 RETURN
3410

. 3420
3430 -- This routine determines the case of activity
3440 start (CASLI) and end (CASE2) relative to

3450 the period start and end...

3460
3470 CASE1 and CASE2 equal 1 if times are before
3480 the period starts, 2 if during the period,
3490 or 3 if after the period. Thus if CASE1 is
3500 3 or CASE2 is 1, the whole activity falls

3510 outside the period in question. If both

3520 CASE1 and CASE2 are 2, then the whole
3530 activity is within the period
3540

3550 CASE3 has a value of I if the whole
3560 ' activity falls on a single byte, 2 if on
3570 adjacent bytes, and 3 if one or more whole
3580 bytes fall between the start and end.

3590
3600 START.BIT a START.TIME\INCR

3610 START.BYTE - START.BIT\S + 1
3620 END.BIT * (END.TIME-t)\INCR

3630 END BYTE = END BIT\8 + 1

3640 IF START.TIME)- PERIOD.ST.TIME THEN COND1 a -1 ELSE
CONDI a 0
3650 IF START.TIME ((PERIOD.ST.TIME + PERIOD.DUR) THEN C
ONDZ = -1 ELSE COND2 . 0
3660 IF CONDI AND COND2 THEN CASE1 a 2 ELSE IF NOT COND1
THEN CASE1 = 1 ELSE IF NOT COND2 THEN CASE1 a 3
3670 IF END.TIME) PERIOD.ST.TIME THEN COND3 = -1 ELSE CO~ND3 * 0

3680 IF END.TIME (a (PERIOD.ST.TIME PERIOD.DUR) THEN COND

4 * -1 ELSE COND4 a 0
3690 IF COND3 AND COND4 THEN CASE2 a 2 ELSE IF NOT COND3
THEN CASE2 a 1 ELSE IF NOT COND4 THEN CASE2 = 3

3700 IF END BYTE * START.BYTE THEN CASE3 a I
3710 IF END.BYTE - START.BYTE * I THEN CASE3 a 2
3720 IF END.BYTE - START BYTE > I THEN CASE3 = 3

3730 RETURN
3740 '
3750
3760 This routine selects the proper routine for
3770 'checking or setting availability based on the case
3780 'defined by CASE1, CASE2, and CASE3

3790

HD-A133 271 COMPUTER ASSISTED SCHEDULING FOR AIR FORCE TACTICAL 2/2
FIGHTER SQURDRONS(U) ARMY COMMAND AND GENERAL STAFF
COLL FORT LEAVENWORTH KS B C DUGLE 03 JUN 83

UNCLASSIFIED SBI-AD-E750 845 F/G 12/I NL

ImEIIIIEIIIIEEIhIEEEIhIhI
El"'-I

K m•

1. IL
M JJ-2

Jil IA23 132 4
MICOCPYREOLTIN ES CAR

MA04 BU EOADR -13A

11111

%

%1112 I . .

89
3800 if start is before period...

3810 IF CASEl=l AND CASE2=2 THEN ON CASE3 COSUB 3970,4070
,4070

3820 if start and end are during period..

3830 IF CASE1=2 AND CASE282 THEN ON CASE3 COSUB 4200,4370

,4330
3840 if start is durinq period but end is after.

3850 IF CASE1-2 AND CASE2-3 THEN ON CASE3 GOSUB 4550,4680

,4680
3860 if start is before and end is after period..

3870 IF CASE1=a AND CASE2=3 THEN FIRST.BYT-l: LAST.BYTmLE
N(AVAILS): GOSUB 4720

3880 the final case ends before or starts after
3890 period...

3900 IF CASE1=3 OR CASE2=I TREN PRINT"Activity is complet
ely outside the period..."

3910 RETURN

3920 _
3930
3940 ' This routine is used when END.BYTES is the

3950 first byte of AVAILS...

3960
3970 FIRST.BIT.USED a 0: LAST BIT.USED a (END.BIT MOD 8)

3980 BYT.TO.CKS a LEFTS(AVAILS,I)
3990 GOSUB 4940

4000 IF AVAIL AND SET THEN MIDS(AVAILS,1.1) - CHRS(ASC(BY

T TO.CX$) AND (NOT MASK))

4010 RETURN
4020 _

4030

4040 This routine is used when END BYTE points to

4050 ' end byte...

4060
4070 FIRST.BYT = 1: LAST.BYT a END.BYTE-I

4080 GOSUB 4820

4010 FIRST.BIT.USED a 0: LAST.BIT.USED a (END-BIT MOD 8)
4100 BYT TO.CKS a MIDS(AVAILSEND BYTEl): J a END.BYTE
4110 GOSUS 4940

4120 IF AVAIL AND SET THEN GOSUB 5060 ELSE RETURN

4130 M:DS(AVAIL$,END.BYTE,Ii a CHRS(ASC(BYT.TO.CK$) AND
NOT MASK))

4140 RETURN
4150 _

4160

4170 --- This routine is used for the single byte case

4180 where one byte includes both start and end .

4190
4200 UYT.TO.CK9 a MIDS(AVAILt,START BYTE,1)

4210 MASK a 0

4220 FIRST.BIT USED a (START.BIT MOD 8)

4230 LAST.BIT.USED a (END BIT MOD 8)

4240 GOSUB 4940

4250 IF AVAIL AND SET THEN MID1(hVAIL%,START BYTE,!) a CH

*. ..

90
RS(ASC(BYT TO.CKS) AND (NOT MASK))

4260 RETURN
,,4270 __ _ _ _ _ _ _ _ _ _ __ _ _ _ _ _ _ _ _ __,_ _ _ _ _ _ _ _ _ _

4280
4290 This routine is used when one or more bytesI 4300 separate the first and last bytes or when
4310 they are adjacent...

4320
4330 FIRST.BYT a START.BYTEI. LAST.BYT a END BYTE-I

4340 GOSUB 4820

4350 IF NOT AVAIL THEN RETURN
4360 * CASE3 a 2 enters here...
4370 FIRST.BIT.USED a (START.BIT MOD 8): LAST BIT.USED -

7

4380 BYT TO.CKS m MIDS(AVAILS,START.BYTE,I)
4390 GOSUB 4940

4400 IF AVAIL AND SET THEN MASK ST=MASK. BYTSTS=BYT.TO.C

KS ELSE IF NOT AVA:L THEN RETURN
4410 FIRST BIT USED a 0: LAST BIT.USED a (END.BIT MOD 8)

4420 BYT TO.CKS = MIDS(AVAILS,END.BYTE,): J a END.BYTE
4430 GOSUB 4940

4440 IF NOT AVAIL THEN RETURN
4450 IF (CASE3=3) AND (AVAIL AND SET) THEN COSUB 5060
4460 IF NOT(AVAIL AND SET) THEN RETURN
4470 MIDS(AVAILS,START.BYTE,1) a CHRS(ASC(BYT.ST$) AND (N

0T MASK.ST))
4480 MIDS(AVAILS,END.BYTEI) a CHRS(ASC(BYT.TO.CKS) AND
NOT MASK))
4490 R.ETURN
4500 '
4510
4520 ' --- This routine is used when the last byte in the
4530 string is the only byte to be checked..

4540
4550 BYT.TO.CKS a MIDS(AVAILS,START.BYTE,I)
4560 FIRST.BIT.USED a (START BIT MOD 8) LAST.BIT.USED a
(PERIOD.END.BIT MOD 8)

4570 GOSUB 4940

4580 IF AVAIL AND SET THEN MIDS(AVAILS,START.BYTE,L) a CH
RS(ASC(BYT.TO.CKS) AND (NOT MASK))

4590 RETURN

4600 '
4610
4620 ' --- This routine is used when the activity ends

4630 after the period and the first byte is one

4640 or more bytes from the end of AVAILS. The

4650 last two cases of CASE3 are both checked by

4660 this routine.

4670

4680 FIRST.BIT.USED a (START.BIT MOD 8) LAST BIT.USED a
7
4690 BYT.TOCKS a MIDS(AVAILS,START.BYTEI)
4700 GOSUB 4940

4710 FIRST BYT a START.BYTE+I: LAST.BYT a LEN(AVAILS)
4720 GOSUB 4820

91

4730 iF AVAIL AND SET THEN GOSUB 5060 ELSE RETURN

4740 MIDS(AVAILS,START.BYTE,I) u CHRS(ASC(BYT TO.CKS) AND

(NOT MASK))
4750 RETURN

4760 _

4770

4780 This routine is used by the routines above when

4790 whole bytes are being checked for

4800 availability ...

4810

4820 FOR J - FIRST.BYT TO LAST.BYT

4830 BYT.TO.CKS a MIDS(AVAILS,J,1)

4840 IF BYT.TO.CK1 () CHRS(255) THEN FIRST BIT.US

ED=O: LAST.BIT.USED7: GOSUB 4940

4850 IF NOT AVAIL THEN RETURN
4860 NEXT

4870 RETURN
4880
4890
4900 This routine is called by above routines to

4910 check availability within partial bytes of

4920 AVAILS.-
4930

4940 MASK - 0
4950 FOR K - FIRST.BIT.USED TO LAST.BIT.USED

4960 MASK - MASK + 2"K

4970 IF CASC(YT.TO.CKS) AND 2"K) - 0 THEN AVAIL

- 0: RETURN
4980 NEXT

4990 RETURN
5000 _
5010

5020 This routine is called when a whole byte is to

5030 be set to NOT AVAILABLE state, both AVAIL

5040 ' and SET are TRUE
5050

5060 FOR J - FIRST.BYT TO LAST.BYT

5070 MID$(AVAIL$,J,1) a CHR$(O)

5080 NEXT
5090 RETURN

5100 '
5110

5120 this routine checks and sets NET and NLT times

5130 ' used for checking crew rest

5140
5150 DAY a START.TIME\1440 + 1

5160 IF DAY (2 OR DAY) 6 THEN C.REST = -1. RETURN

5170

5180 IF START TIME)a NET(DAY) OR NET(DAY) , -1 THEN ST C

K a -1 ELSE ST.CK a 0
5190 IF END.TIME (a NLT(DAY) OR NLT(DAY) a -1 THEN END.CK

a -1 ELSE END CK a 0

5200
5210 IF ST CK AND END.CK THEN C REST - -1 ELSE C.REST - 0

RETURN

92
5220
5230 If (START.TIME-720 < NLT(DAY-.)) OR (NLT(DAY-1)*-

*) THEN NLT(DAY-1) u START TIME - 720
5240 If (NLT(DAY)) START.TIME,720) OR (NLT(DAY) a -1) THii EN NLT(DAY) a START.TIME + 720
5250 IF (NET(DAY (END.TIME-720) OR (NET(DAY) u -1) THEN
NET(DAY) = END TIME -7Z0

5260 IF (NET(DAY,1) (END.TIME+720) OR (NET(DAY.1) -1
THEN NET(DAY,1) aEND-TIME + 720
5270
5280 RETURN

.I

93
.00 ' SCHED.SET ***** * *****.... **

110 'program dated 25 May 1983
120
130 'This program builds the bare schedule file from
140 shellnn.dat and wknn dat
150

160 variables required:
170 none
180

190 'returns:
200 SCHEDnnizxx file
210

220 DEFINT A-Z

230 CLRS a CHRS(26): DOWNS = CHRS(10): ESCS - CHRS(27)
240 MID.SCRNS a CLRS + STRINGS(6,10)

250 UPS = CHRS(11)" MOV.LEFT$ a CHRS(B): MOV.RIGHTS a CH
RS(12)
260 HOMES a CHRS(30): CLR LINES a ESCS + "T"
270
290 PERIOD.ST.TIME a 0: PERIOD.DUR = 10080: INCR = 30: M
AX.PIL.NUM a 60
290 DIM QUAL(MAX PIL.NUM), AVAIL$(MAX.PIL.NUM), CUR.DT(M
AX.PIL NUM,9)
300 DIM PILOTS(253), ACT.CUR.QUALS(235)

310 ACT.CODE.USEDS = STRINGS(32,0)
320
330 CS = "Enter: 0 if correct, 1 to change it:
340 E$ a "ErLor, enter 0 or 1 only, try again..."

350
360 PRINT MID.SCRNS "Enter the week number.";

370 INPUT" ", WK.NUMS
380 WKDAT.FILES = "WK" + WK.NUMS + ".DAT"

390 ON ERROR GOTO 410
400 OPEN "t", 1, WKDAT FILES
410 IF ERR u 53 THEN PRINT"No " WKDAT FILES " found, can
not continue. " ELSE CLOSE

420 ON ERROR COTO 0
430 OPEN "R", 1, WKDAT.FILES, 93
440 FIELDSI, I AS MIS, 2 AS M26, 9 AS N36, 81 AS N46
450 N a MAX.PIL.MUM + 1
460 GET01, N
470 WK.DATE a CVI(N2$)! WK.DATES a N3$
480 CLOSE

490

S00 SCHED MUM a 0

510 FIL.NAM.FOUND a 0
520 WHILE NOT FIL NAM-FOUND
530 SCHED NUM * SCHED NUM + 1
540 SCHED.NUMS MIDS(STRS(SCHED. IUM),Z)
50 WHILE LEN(SCHED.NUMS) (3
560 SCHED NUMS a "0" * SCHED NUM$

570 WEND
SSO FILENAMES a "SCHED" • WK HUMS * ' " SCHED.NUMS

590
600 'checi if file already exists

94
610 ON ERROR GOTO 630
620 OPEN "1", 1, FILENAMES
630 IF ERR a 53 THEN FIL.NAM FOUND • -1 RESUME 650 EL
SE CLOSE01
640 'no error indicates file was found and opened, try a
gain,
650 ON ERROR GOTO 0
660 WEND
670 PRINT"Using FILENAMES " for schedule data, dated
WK.DATES

680 PRINT: PRINT CS;: AS a INPUTS(1): PRINT AS
690 IF AS a "1" THEN COTO 360 ELSE IF AS () "0" THEN PRI
NT ES: GOTO 670
700
710 ' __schedule_data
720
730 OPEN "R", 1, FILENAMES, 58
740 ' seq.num: actsched.time: act-code: pil.num
st time end time: act name: pilots cur req: qu

al. req:
750 FIELD01, 2 AS N1lS, 2 AS N12S, I AS N13S, 1 AS N141,
2 AS N1SS, 2 AS N166, 20 AS N17S, 8 AS NIBS, 10 AS N191, 10
AS NIIO$

760 FIELDOl, 58 AS NIA$
77 0 *

780 SHELL.FILES a "SHELL" + K.NUMS + "'.DAT"
790
B00 'open shell data file as 02...
810 OPEN "R", 2, SHELL.FILES, 30
620 ' seq.num: act.sched.time: act.code: pil.num:

act-st time: act.end.time: act.name:
830 FIELD#2, 2 AS N2IS, 2 AS N22$, 1 AS N23S, 1 AS N24
$, 2 AS N25S, 2 AS N26S, 20 AS N27S
840 FIELD#2, 30 AS N2AS
850 *

860 M a 0: N a 0: END.FIL u 0: ACT.SCHED.TIME a 0: MAX.N
- 20

870 DIM ACTS(19)
860

890 'following string has bits 0 thru 59 'ON'
900 ALL.PILOTS a STRINGS(7,255) + CHRS(15)
910
920 'open act def file as 03 for currency and qual
930 ' reqts.
940 OPEN "R", 3, "ACT.DEF", 46
950 FIELD*3, 2 AS N31S, 20 AS N32S, 2 AS N331, 2 AS N341
1 10 AS N35$, 10 AS N365

960
970 PRINT"Gettinq shell data from " SHELL FILES " and sa

vine in " FILENAMES
960 WHILE NOT END.FIL
990 'get shell records 20 at a time or until end

1000 ' found...
1010 WHILE (ACT.SCHED TIME 0 32767) AND (N < MAX N)

1020 N N 1

, 4 .

95
1030 GETO2, N
1040 'save temporarily in actS, make len equal to new
1050 rec len by appending null chars..
1060 ACTS(N MOD 20) a N2AS + STRINGS(58 - LEN(N2AS),0

*)

1070 ACT.SCHED.TIME = CVI(N22S)
1os0 WEND
1090 IF ACT SCHED.TIME u 32767 THEN END FIL a -1
1100 'save next 20 or all remaining actS in schednn.xxz
1110 file...
1120 WHILE M (N
1130 M a M 1
1140 ACT.CODE a ASC(MIDS(ACTS(M MOD 20),5,1))
1150 GETS3, ACT.CODE
1160 CUR.REOS a N35$: OUAL.REQS = N36S
1170 ACT CUR.QUALS(ACT.CODE) = CUR.REOS + QUAL.REGS
1180
1190 'save the currency and qual strings with the record
1200 and the act.code.used bit for each act.code
1210 ' in the schedule

1220
1230 IIDS(ACTS(M MOD 20),39,20) = ACT.CUR.QUALS(ACT.C
ODE)
1240 BYTE = ACT.CODE\8 + 1: BIT a (ACT.CODE - 1) MOD
8

1250 BYTS a MIDS(ACT.CODE.USEDS,BYTE,1)
1260 IF (ASC(BYTS) AND 2BIT) () 2"BIT THEN MIDS(ACT.
CODE.USEDS,BYTE,t) = CHRS(ASC(BYTS) + 2"BIT)
1270
1280 LSET NIAS a ACTS(M MOD 20)
1290 PUT#I, M
1300 WEND
1310 MAX.N a MAX.N + 20

1320 WEND
1330 MAX.N a N

1340 CLOSE 02, 03
1350 ERASE ACTS
1360 PRINT"Transfer completed"
1370
1380 'schednn.zxx now has a record for each activity
.390 found in the schedule shell..
1400
1410 'open weekly data file as 03 and get avails and
1420 qual data in memory

1430 PRINT"Gettinq AVAILS and QUAL data from " WXDAT FILE
S

1440 OPEN "R", 3, WKDAT.FILES, 93
1450 pil.num: availS: cur.dt: qual:

netlnlt:
1460 FIELD03, I AS N315, 42 AS N326, 20 AS N331, 2 AS N34
S, 28 AS N35S
1470 FIELD*3, 93 AS N3AS
1480 'open a specific weekly data file to be used with
1490 * this schedule data...
1500 OPEN "R", 2, "WK" + WK NUMS + " " + SCHED NUMS, 93

------------------------------o Q° ,
•

% o- ,•-o .•-" "•---- - "."• ° • - .- -' • ..

96

1510 FIELDSZ, 93 AS NZAS
1520

1530 FOR P = 1 TO MAX.PIL.NUM
1540 GETO3, P

1550 IF P () ASC(N31$) THEN PRINT"Error in " WKDAT.FILE

S ", record" P ") to pilot number" ASC(N311)

1560 AVAILS(P) a N32$
1570 FOR Q = 0 TO 9
1580 CUR.DT(P,Q) a CVI(MIDS(N33S,Q'2 1,2))
1590 ' NEXT

1600 QUAL(P) a CVI(N34S)

1610 'save in individual week's data file...
1620 TMP$ a N3AS: LSET H2A1 a TNPS

1630 PUT*2, P

1640 NEXT
1650 'save final record -date data...
1670 TMPS a N3AS: LSET N2AS T TIMPS

•1680 PUT42,P

1690 CLOSE 02, 03

1700

1710 'check each act.code (if used) then evaluate each
1720 pilot for qualification and save in pilotS...

1730 FOR I a 1 TO 254
1740 BYTE u I\8 + 1: BIT m (I-1) MOD 8

1750 BYTS = MIDS(ACT.CODE.USEDS,BYTE,t)
1760 'set the pilots bits on only for qualified pilots...

1770 IF (ASC(UYTS) AND 2"BIT) a 2"3IT THEN GOSUB 2060.
PILOTS(I) a PILOTS

1780 NEXT

1790
1800 now have pilots qualified for each activity saved

1810 in pilotS(act.code); next, determine which

1820 qualified pilots are also available, then

1830 save with the activity record in schednn.xxx

1840

1850 FOR N I 1 TO MAX.N - 1
1860 PRINT"Getting AVAILS data for sched sequence
number" N

1870 GETOI, N

1880 ACT.CODE a ASC(N13S)
1890 IF ACT.CODE) 128 THEN PILOTS a PILOTS(ACT.C

ODE) ELSE PILOTS m N18S
1900 ACT.ST TIME a CVI(NSS): ACT END.TIME a CVI(

N161)
1910 FOR I m I TO MAX.PIL.NUM

1920 AVAILS a AVAILS(I)

1930 BYTS a MIDS(PILOTS,I\8 1,1): BIT a (1-1) M

OD $
1940 IF (ASC(BYTS) AND 2"BIT) Z'BIT THEN GOSU

B 2230

1950 NEXT
1960 LSET NIB8 S PILOTS

, 1970 PUTSI, N

1980 NEXT

97

1990 PRINT"Schedule file completed" END
2000
2010 _subroutines

2020
2030 this routine compares the qual reqd values to the
2040 pilot qual values and sets the pilotS bit
2050 on if a qual match is found...

2060 PILOTS a STRINGS(8,0)
2070 PRINT"Checkinq pilot qualifications for activity cod

ill I
2080 FOR P a I TO MAX.PIL.NUM

2090 J a 0: QUAL.FOUND . 0
2100 WHILE QUAL.FOUND - 0 AND J (5

2110 J a J + I
2120 QUAL.REQ = CVI(MIDS(ACT.CUR.QUALS(I),J*2+9,2))
2130 IF (QUAL(P) AND QUAL.REQ) u QUAL.REQ THEN QUAL.F

OUND * -1

2140 WEND
2150 BYTE a P\8+1 BYTS = MIDS(PILOTS,BYTE,1): BIT a (P

-1) MOD 8
2160 IF QUAL.FOUND THEN MIDS(PILOTS,BYTE,1) a CHRS(ASC(

BYTS) + 2*BIT): PRINT"Pilot" P "qual" ELSE PRINT"Pilot" P "n
at qual"

2170 NEXT
2180 FOR H = I TO 8: PRINT ASC(MIDS(PILOTS,H,l));: NEXT:

PRINT

2190 RETURN
2200
2210 'this routine checks a pilot for availability and

2220 ' turns off the pilotS bit if not available.

2230 START.TIME a ACT.ST.TIME
2240 END.TIME a ACT.END.TIME

2250 AVAIL = -1: SET a 0
2260 GOSUB 2760

2270 PRINT"Pilot" I;
2280 IF NOT AVAIL THEN MIDS(PILOTS,I\8+1,1) a CHRS(ASC(BY
TS) - 2'IT):, PRINT"Not avail" ELSE PRINT"Avail"

2290 RETURN
2300

2310 'trim trailing spaces...
2320 L = LEN(TRIMS) + 1: L.CHRS a CHRS(0)
2330 WHILE ASC(L.CHRS) (33

2340 L = L - I
. 2350 L.CHRS M MID$(TRIMS,L,l)

2360 WEND
2370 TRIMS a LEFTS(TRIMS,L)
2380 RETURN

2390 '

2400 'dynamic array size increase...

2410 DIM TMPS(MAX.N)
2420 FOR M a I TO MAX.N TMPS(M) a ACTS(M). NEXT

2430 ERASE ACTS: DIM ACTS(MAX N + 10)

2440 FOR M w I TO MAX N ACTS(M) a TMPS(M): NEXT

2450 MAX.N a MAX.N * 10
2460 ERASE TMPS

.... _ -.......-... , - ,4 ,. .. ,° ,.. 4-. ." , , , , .- . . .% - '.

• " , • -.. .-.- , •.

98
2470 ON ERROR GOTO 0
2480 RETURN
2490
2500 '
2510
2520 '"* CASE '''

2530 'module dated 24 April 1983
2540
2550 This module includes subroutines called by other
2560 modules in determining the case of each
2570 activity relative to the week
2580
2590 'variables rquired:
2600 PERIOD.ST.TIME as an integer in minutes or o
ther time units
2610 PERIODODUR as an integer length of period
2620 INCR as an integer for the value of each bit
(resolution)

2630 ' START-TIME as values for the activity
2640 ' END.TIME "

2650 ' AVAILS as a bit string with 'I' available,
0' not avail
2660 AVAIL as a control code
2670 SET as a control code to set the time 'not a
vailable'

2680
2690 'returns:
2700 AVAIL as TRUE if time is available
2710 AVAILS updated if AVAIL and SET both TRUE
2720
2730 subroutines used:
2740 all internal
2750
2760 GOSUB 2980
2770 GOSUB 3190
2780 RETURN
2790 _

2800
2810 ' This routine determines the case of activity
2820 * start (CASEI) and end (CASE2) relative to
2830 o the period start and end...
2840
2850 ' CASEt and CASE2 equal 1 if times are before
2860 the period starts, 2 if during the period,
2870 or 3 if after the period. Thus if CASEI is
2880 3 or CASE2 is 1, the whole activity falls
2890 outside the period in question. If both
2900 CASEI and CASE2 are 2, then the whole
2910 activity is within the period.
2920 '

2930 'CASE3 has a value of 1 if the whole
2940 ' activity falls on a single byte, 2 if on
2950 ' adjacent bytes and 3 if one or more whole
2960 ' bytes 'all bet men the start and end
2970

99

2980 START.BIT * START.TIME\INCR
2990 START.BYTE a START.BIT\8 1

3000 END.BIT - (END.TIME-I)\INCR
3010 END.BYTE a END.BIT\8 + 1

3020 IF START.TIME)z PERIOD ST.TIME THEN CONDI - -1 ELSE

CONDI 0
3030 IF START.TIME ((PERIOD.ST.TIME + PERIOD.DUR) THEN C
OND2 a -1 ELSE COND2 a 0

3040 IF CONDI AND COND2 THEN CASEl a 2 ELSE IF NOT CONDI
THEN CASES a I ELSE IF NOT COND2 THEN CASEI a 3

3050 IF END.TIME) PERIOD.ST.TIME THEN COND3 a -1 ELSE CO
ND3 a 0
3060 IF END.TIME (a (PERIOD ST.TIME.PERIOD.DUR) THEN. COND
4 a -1 ELSE COND4 a 0

3070 IF COND3 AND COND4 THEN CASE2 = 2 ELSE IF NOT COND3
THEN CASE2 = I ELSE IF NOT COND4 THEN CASEZ a 3
3080 IF END.BYTE * START.BYTE THEN CASE3 = 1

3090 IF END.BYTE - START.BYTE a I THEN CASE3 a 2

3100 IF END.BYTE - START.BYTE > I THEN CASE3 : 3

3110 RETURN
3120 '

3130
3140 This routine selects the proper routine for

3150 checking or setting availability based on

3160 the case defined by CASEI, CASE2, and CASE3

3170
3180 * if start is before period...

3190 IF CASElml AND CASEZ? THEN ON CASE3 GOSUB 3340,3440

,3440
3200 if start and end are during period...

3210 IF CASEI?2 AND CASE?2 THEN ON CASE3 GOSUB 3570,3740
,3700
3220 if start is during period but end is after..

!,&;so IF CASEl=2 AND CASE283 THEN ON CASE3 GOSUB 3920,4050
,4050

3240 if start is before and end is after period..

3250 IF CASEIwI AND CASEZ-3 THEN FIRST.BYT•I: LAST.BYTaLE
N(AVAILS): GOSUB 4090
3260 ' the final case ends before or starts after p

sriod...
3270 IF CASEIw3 OR CASE2=I THEN PRINT"Activity is complet

ely outside the period..

3280 RETURN
3290 _

3300

3310 '--- This routine is used when ENDIBYTES Ls the

3320 first byte of AVAILS.

3330

3340 FIRST.BIT.USED a 0: LAST BIT USED - (END BIT MOD 8)
3350 BYT TO.CKS a LEFTI(AVAILS,I)
3360 GOSUB 4310

3370 IF AVAIL AND SET THEN MIDS(AVAILS,1,I) a CHRS(ASC(BY

T.TO.CKS) AND (NOT MASK))

100
3380 RETURN

3390 ___
3400
3410 This routine is used when END BYTE points to

3420 end byte...
3430

3440 FIRST.BYT a 1: LAST BYT a END BYTE-I
3450 GOSUB 4190
3460 FIRST.BIT.USED a 0: LAST.BIT.USED = (END.BIT MOD 8)
3470 BYT.TO.CK$ a MIDS(AVAILS,END.BYTE,I): J a END.BYTE
3480 GOSUB 4310

3490 IF AVAIL AND SET THEN GOSUB 4430 ELSE RETURN
3500 MID$(AVAILS,END.BYTE,I) a CHRS(ASC(BYT.TO.CKS) AND
NOT MASK))
3510 RETURN
3520
3530

3540 --- This routine is used for the sinqle byte case
3550 where one byte includes both start and end...

3560
3570 YT.TO.CKS = MIDS(AVAILS,START SYTE,1)
3580 MASK a 0

3590 FIRST.BIT.USED a (START.BIT MOD 8)
3600 LAST.BIT.USED a (END-SIT MOD 8)
3610 GOSUS 4310
3620 IF AVAIL AND SET THEN MIDS(AVAIL$,START.BYTE,I) = CH
RS(ASC(BYT.TO.CKS) AND (NOT MASK))
3630 RETURN
3640 _
3650

3660 --- This routine is used when one or more bytes
3670 separate the first and last bytes or when
3680 they are adjacent...
3690
3700 FIRST.BYT = START.BYTE+I: LAST.BYT a END.BYTE-1
3710 GOSUB 4190
3720 IF NOT AVAIL THEN RETURN
3730 CASE3 = 2 enters here...

3740 FIRST.BIT.USED a (STARTBIT MOD 8): LAST.BIT.USED =
7
3750 BYT.TO.CKS = MIDS(AVAILS,START BYTE,l)
3760 GOSUB 4310
3770 IF AVAIL AND SET THEN MASK.ST=MASK: BYT.STS=BYT.TO.C
KS ELSE IF NOT AVAIL THEN RETURN
3780 FIRST.BIT.USED a 0: LAST.BIT.USED m (END.BIT MOD 8)
3790 BYT.TO.CK$ a MIDS(AVAILS,END.BYTE,I): J a ENDIBYTE
3800 GOSUB 4310
3810 IF NOT AVAIL THEN RETURN
3820 IF (CASE3=3) AND (AVAIL AND SET) THEN GOSUB 4430
3830 IF NOT(AVAIL AND SET) THEN RETURN

3840 HIDS(AVAILS,START BYTE,1) a CHRS(ASC(BYT.ST$) AND (N
OT MASK ST))
3850 MID$(AVAILS,END.8YTE,l) * CHRS(ASC(BYT TOCKS) AND
NOT MASK))
3860 RETURN

I .

101
-3870

3890 This routine is used when the last byte in the

3900 string is the only byte to be checked

3910
3920 BYT.TO.CKS = MIDS(AVAILS,START BYTE,l)
3930 FIRST.BIT.USED a (START.BIT MOD 8): LAST BIT.USED -
(PERIOD.END.BIT MOD 8)
3940 GOSUE 4310

3950 IF AVAIL AND SET THEN MIDS(AVAILS,START.BYTE,I) - CH
RS(ASC(BYT.TO.CKS) AND (NOT MASK))
3960 RETURN
3970 _

3980

3990 '--- This routine is used when the activity ends

4000 after the period and the first byte is one

4010 or more bytes from the end of AVAILS The

4020 last two cases of CASE3 are both checked by
4030 this routine...
4040
4050 FIRST.BIT.USED = (START.BIT MOD 8): LAST.BIT.USED ,
7
4060 BYT.TO.CKS MID$(AVAILS,START.BYTEI)
4070 GOSUB 4310
4080 FIRST.BYT a START.BYTEl: LAST.BYT a LEN(AVAILS)
4090 GOSUB 4190

4100 IF AVAIL AND SET THEN GOSUB 4430 ELSE RETURN
4110 MIDS(AVAILS,START.BYTE,1) • CHRS(ASC(BYT.TO.CKS) AND
(NOT MASK))

4120 RETURN
4130 '
4140

4 150 ' This routine is used by the routines above when

4160 whole bytes are being checked for

4170 availability ...
4180
4190 FOR J - FIRST.BYT TO LAST BYT

4200 BYT.TO.CKS a MIDS(AVAILS,J,I)
4210 IF BYT.TO.CKS (> CHRS(255) THEN FIRST.BIT.US
EDO: LAST.BIT.USED,7: GOSUB 4310
4220 IF NOT AVAIL THEN RETURN
4230 NEXT
4240 RETURN
4250 '
4260
4270 This routine is called by above routines to

4280 check availability within partial bytes of

4290 AVAILS...
4300

4310 MASK a 0
4320 FOR K - FIRST.BIT.USED TO LAST.BIT.USED
4330 MASK a MASK + 2"K

4340 IF (ASC(BYT.TO.CKS) AND 2"K) , 0 THEN AVAIL

S0 : RETURN

4350 NEXT

.-- ..- ",

102

4360 RETURN
4370 _

4360
4390 This routine is called when a whole byte is to

4400 be set to NOT AVAILABLE state, both AVAIL
4410 and SET are TRUE...
4420
4430 FOR J * FIRST.BYT TO LAST.BYT

4440 MID$(AVAIL$,JI) - CHR$(0)
4450 NEXT

4460 RETURN

4470 _

.. -. . . - ..1- - . . ; . . .- .. . -. , . . . , - . -.- . . . _ .

, .. " .- ' . :. .,4 * , .I* I- . -. . _ - , . , . .-. . . . , . , , .

103
100 WKSCHED.SET
110 'program dated 24 May 1983

120
t30 'This program builds the final schedule file from
140 schednn.xux and wknn.xxx
150
160 'variables required:

170 none

180

190 'returns:

200 SCHEDnn.DAT file when completed
210
220 DEFINT A-Z
230 CLRS a CHRS(26): DOWNS a CHRS(10): ESCS - CHRS(27):

CRS = CHRS(13)
240 MID.SCRNS a CLRS + STRINGS(6,10)
250 UPS a CHRS(11): MOV.LEFTS a CHRS(8): MOV.RICHTS a CH

RS(12)
260 HOMES = CHRS(30): CLR.LINES a ESCS + "T"

270
280 PERIOD.ST.TIME a 0: PERIOD.DUR = 10080: INCR = 30: M
AX.PIL.NUM a 60

290 DIM QUAL(MAX.PIL.NUM), AVAILS(MAX.PIL.NUM), PIL.NAMS
(MAX.PIL.NUM + 1)

300 DIM PILOTS(2S4), CUR.NAMS(15), EXP.DUR(15), INXP.DUR

(15), EVENT.NUM(1S)
310 DIM NET(7), NLT(7)

320 ACT.CODE.USEDS a STRINGS(16,0)
330 DAYS a "SunMonTueWedThuFriSat"

340 MONTHS a "JANFEBMARAPRMAYJUNJULAUGSEPOCTNOVDECJA

H"&
350 FIRST.DAYS a "00103206009112115218221324427430533536
6"

360

370 CS a "Enter: 0 if correct, 1 to change it:
380 ES a "Error, enter 0 or I only, try again...
390
400 PRINT MID.SCRNS "Enter the week number:";: INPUT" ",

WK.NUMS

410 FILENAME$ = "SCHED" + WK.NUM$ +
420 PRINT"Schedule files for week " WK.NUMS ":": PRINT

430 FILES FILENAMES: PRINT DOWNS

440 PRINT"Enter the schedule file number or 0 to start a
gain:";: INPUT" ", SCHED.NUMS
450 IF SCHED.NUNS a "0" THEN COTO 400

460 WHILE LEN(SCHED.NUMS) (3
470 SCHEDNUMS a "0" + SCHED.NUMS

480 WEND

490 FILENAMES s "SCHED" + WK.NUM% "." SCHED.NUMS
500

510 PRINT MID.SCRNS "Using " FILENAMES " for schedule da

520 PRINT CS;: AS a INPUTS(1): PRINT AS

530 IF AS a "1" THEN COTO 400 ELSE IF AS 0 "0" THEN PRI

NT ES: GOTO 520

104

540
550 ' s__ cheduledata
560
570 OPEN "R", 1, FILENAMES, 58
580 seq hum: act sched time act.code pil mum:

t. time: end. time: act name: pilot s cur req qu
4. . req:
590 FIELDOI, 2 AS NIIS, 2 AS N12S, 1 AS N13S, 1 AS N14S,
2 AS NISS, 2 AS N16S, 20 AS N17%, 8 AS NISS, 10 AS N19$, 10
AS NIl0S

600 FIELD#I, 58 AS NIAS

610

620 PR.INT MID.SCRNS "Getting date data..
630 WKDAT.FILES a "WK" + WK.NUMS + .. SCHED.NUMS
640 OPEN "R", 2, WKDAT FILES, 93
650 FIELD*2, I AS N216, 2 AS N221, 9 AS N23S, 81 AS N24$
660 GET#2, MAX.PIL.NUM + I
670 IF ASC(N2IS) () MAX.PIL.NUM + I THEN PRINT"File acce
ss error in " WKDAT.FILES
680 WK.DATE s CVI(N22$) WK DATES = N23$
690 IF (WK.DATE MOD 1000)%7 <) VAL(WK.NUMS) THEN PRINT"E
rror: week number " WK.NUMS " does not agree with file " WKD
AT.FILES ",

dated " VK.DATES
700 CLOSE *2

710
720 PRINT MID.SCRNS "Getting currency names from file...
Is

730 OPEN "R", 2. "CUR.DEF", 28
740 ' cur.num: cur.namS: exp.dur: inxp.dur:

event .um:
750 FIELD#2, 2 AS N21S, 20 AS N226, 2 AS N23$, 2 AS N24S

2 AS N255
760 FOR I I 1 TO 15
770 GET#2, I
780 TRIMS a N226: GOSUB 3510: CUR.NAM$(I) * TRIM

790 EXP.DUR(I) - CVI(N23$)
800 INXP.DUR(I) a CVI(N246)
810 EVENT.NUM(I) a CVI(N256)

820 NEXT
830 CLOSE 02
840
850 PRINT MID SCRNS "Getting pilot names from file..."
860 OPEN "R", 2, "PILNAM.DEF", 27
870 ' pil-num: I.nameS" initS: rankS
880 FIELDS2, 2 AS N21S, 20 AS N226, 2 AS N23S, 3 AS N24S
890 FOR I a I TO MAX.PIL.NUM
900 GETS2, I
910 TRIMS a N22$

" 920 IF TRIMS a "Not in use " THEN GOTO
950 ELSE GOSUU 3510: PIL.NAMS(I) a TRIMS

• ' 930 PIL.NAMS() a N24S + PIL.NAMS(I) +

* N231

940 PRINT CRS STRINGS(33,32) CRS USING " ;: I,

105
PRINT " - " PIL.NAMS(I);
950 NEXT
960 PIL.NAMS(MAX.PIL.NUMeI) " None"
970 CLOSE #2
960
990 N = 0: ACT.SCHED TIME a 0
1000 PRINT MID.SCRNS "Getting length of " FILENAMES
1010 WHILE ACT.SCHED.TIME () 32767
1020 N • N + 1
1030 GETPI, N
1040 ACT.SCHED.TIME a CVI(N12S)
1050 WEND
1060 MAX.N a N: DIN ACTS(MAX.N)
1070 PRINT"Reading " FILENAMES " into memory"

1080 FOR N a 1 TO MAI.N
1090 GETI1, N
1100 ACTS(N) = NIA
11l0 NEXT
1120
1130 PRINT MID.SCRNS FILENAMES " data now in memory..."
1140
1150 open data file...
1160 OPEN "R". 2, WKDAT.FILES, 93
I170 FIELDS2, I AS NZ2IS, 42 AS N222S, 20 AS N2231, 2 AS
N224$, 28 AS N225S
1180

1190 PRINT
1200 PRINT" Enter:"
1210 PRINT" a to quit"
1220 PRINT" 1 to fill schedule in sequence numb&
r order"
1230 PRINT" 2 to fill Individual sequence number
activit ies"
1240 IRINT" 3 to fill by activity number"
1250 PRINT" Which choice? ";
1260 SEL a VAL(INPUTS(I))
1270 IF SEL = 0 THEN GOTO 1310 ELSE IF SEL) 3 THEN PRINT
"Error, enter 0 to 3 only, try again.. ." GOTO 1250
1280 ON SEL GOSUB 1400, 1430, 1500
1290 PRINT MID SCRNS: GOTO 1190
1300 '

1310 FOR N a I TO MAX.N
1320 LSET NIA$ a ACTS (N)
1330 PUTOI, N
1340 NEXT
1350 PRINT MID.SCRNS "Schedule data saved in " FILENAMES
" and " WKDAT.FILES
1360
1370 '__contol subroutines
1380
1390 'step thru in sequence number order..
1400 PR!NT"Not written yet.. ."i DUMMYS a INPUTS(1)

1410 RETURN
1420 'one seq num at a time from keyboard...
1430 PRINT MID.SCRNS "What is the sequence number?",

I- A"o ' ... '..% . . %". .- " % o~ - .. - -- .- . . . - ., . - - - . . .-..

106
1440 INPUT" ",SEO.NUM

1450 IF SEQ MUM (a 0 THEN GOTO 1480 ELSE If SEQ NUNl MAX
.N THEN PRINT"Error: sequence number too big, enter a number
from 0 (toa

quit) to" MAX.M: PRINT"Try again:';, I.NPUT11 1, sEQ.NUM: GOTo
1450

1460 GOSUB 1560
1470 PRINT"Enter 0 to quit, sequence number to display an

other schedule activity.": GOTO 1440
1450 RETURN
1490 'by activity number ...
1500 PRINT"Not written yet ..."11; DUMMIY$ INPUTI(1)
1510 RETURN
1520
1530 '__subroutines__________________

1540
1550 'display an activity and candidates on screen..
1560 IF SEO-NUM 0) CVI(MIDS(ACTS(SEQ.NUI),l,2)) THEN PRIM
T"Error in file at record " SEO-MUM
1570 ACT.SCHED.TIME a CVI(MIDS(ACTS(SEQ2 HUM),3,2))
1580 'get clock time, day, and date ...
1590 GOSUB 3730: SCHED.TIMES a THIS.TIMES
1600 GOSUB 3880
1610 ACT.CODE aASC(MID6(ACT$(SEQ.NUM),5,l))
1620 PIL.NUM aASC(MID1(ACT$(SEQ.NUM),6,l))
1630 START.TIIIE a CVI(MID$(ACTS(SEQ.NUM),7,2))
1640 GOSUB 3730: ST.TIIIKS a THIS.TIMES
1650 END.TIME so CVI(MIDS(ACTS(SEQ.NUM),9,2))
1660 GOSUB 3730: ENO.TIMES a THIS.TIMES
1670 If PIL.NUM a 255 THEN PIL.NUM a MAX.PILMNUM *1

1680 ACT.MAMES a MID$(ACTS(SEO.NUM),11,20)
1690 CANDS a IIDS(ACTS(SEQ.NUM),31,S)
1700 CAMO TOT = 0
1710 FOR I on I TO MAX.PIL.NUM
1720 BYTE a ASC(IlID$(CAMD$,I\G+1,1)): BIT a (1-1)
MOD S
1730 IF (BYTE AND 2'BIT) a 2'BIT THEN CAND.TOTa
CAND.TOT + I
1740 NEXT
1750 CUR.REQI a CVICMIDS(ACTS(SEO.NUM),39,2))
1760
1770 PRINT LEFTS(MID.SCRNS,S);
1780 PRINT"Sequonce number:"1 SEO.NUM TAB(50) THIS.DAYS "

"THIS.DATES DOWN$
1790 PRINT SCHED.TIMES $ ACT.NAMES TAB(35) "Assigned:

PIL.NAMS(PIL.NUM) DOWNS
1800 NONE a -1
1sl0 PRINT"Cucrncies required."
1820 FOR I a 0 TO 14
1830 IF (CUR.REG AND 2'1 2*1 THEN PRINT CUR.NAMS(I
+1) "";:IF NONE THEN NONE a 0
1840 NEXT
1850 IF NONE THEN PRINT"None"
1860 PRINT
1670 PRINr"Candidate names

ta_

107
1880 IF CAND.TOT * 0 THEN PRINT"None shown as both qualif
ted and available": GOTO 2170

1890 K a 0: L a CAND.TOT\3
1900 IF CAND.TOT MOD 3 > 0 THEN Li a L + I ELSE Li a L
1910 IF CAND TOT MOD 3) I THEN L2 a L + 1 ELSE L2 x L

1920 BYTE a 0: BIT = 0: LN a 0
1930 WHILE LH (Li

1940 LN a LN + 1
1950 I a 0
1960 'find first column name to print...

1970 FOR J a 1 TO LN

1980 GOSUB 3290
1990 NEXT

2000 'print it...
2010 GOSUB 3370: IF K a CAND.TOT THEN GOTO 2140

2020 'skip 11 names
2030 FOR J a 1 TO LI
2040 GOSUB 3290

2050 NEXT
2060 'print the next one
2070 GOSUB 3370: IF K a CAND.TOT THEN GOTO 2140

2080 'skip 12 names
2090 FOR J -1 TO L2

2100 GOSUB 3290
2110 NEXT

2120
2130 GOSUB 3370

2140 WEND
2150 0

2160 'screen now shows activity and available pilots...

2170 PRINT"Enter 0 to skip selection or pilot number to s

Select a pilot for this activity"
2180 INPUT"Which pilot number? ", I
2190 IF I (a 0 THEN GOTO 3060 ELSE IF I) MAX.PIL.NUM THE
N PRINT"Out of range, enter a number from 0 to" MAX.PIL.NUM

"only, try a
gain": COTO 2180

2200 'check avail and crew rest if applicable...

2210 GET*Z, I
2220 IF I) ASC(N221S) THEN PRINT"File access error in
WKDAT.FILES
2230 AVAILS a N222$
2240 NET.NLTS u N225S
2250 FOR N a I TO 7
2260 NET(N) a CVI(MIDS(NET.NLT$,N*4 - 3,2))
2270 NLT(N) = CVI(MID$(NET.NLT1.N*4 - 1,2))
2280 NEXT

2290 AVAIL a -1: SET n 0

2300 PRINT"Recheck availability of " PIL.NAMS(I);

2310 GOSUD 4300

2320 IF NOT AVAIL THEN PRINT" is not good, resetting stat

us.": MIDS(ACTS(SEQ.NUM),I\8+31,1) a CHRS(ASC(MIDS(CANDS,I
\8 1,1)) - 2
• ((I-I) MOD 8)): GOTO 1560

2330 IF AVAIL AND (ACT.CODE AND 192) THEN GOSUB 3110 ELSE

........ +.+.+.

108
C.REST - -I

2340 IF C.REST AND AVAIL THEN PRINT" is good" ELSE PRINT"
is not good"

2350 IF AVAIL AND (NOT C.REST) THEN PRINT"Crew rest rules
not met, enter 0 to ignore crew rest or I to NOT select thi

2 pilot ",

A$ a INPUTS(I): PRINT AS ELSE GOTO 2380
2360 IF AS a "I" THEN GOTO 1770 ELSE IF AS (> "0" THEN PR
INT ES: GOTO 2350
2370 'avail and crew rest check gooA so set this pilot in

this activity ..
2380 SET - -1: GOSUB 4730

2390 BYTE a ASC(MIDS(CANDS,I\8 l,t)): BIT a (1-1) MOD 8
2400 IF (BYTE AND 2"BIT) a 2"BIT THEN MIDS(CANDS,I\8+t,1)

a CHRS(BYTE - 2"BIT)

2410 LSET N222S a AVAILS

2420 FOR N a 1 TO 7
2430 IF NET(N) () -1 THEN MIDS(NET.NLTS,N*4 - 3,2
) = MKII(NET(N))
2440 IF NLT(N) (-1 THEN MIDS(NET.NLTS,N*4 - t,2
) a MKIS(NLT(N))
2450 NEXT

2460 LSET N2254 a NET.NLTS
2470 PUT*2, I

2480 'update actS(seq.num) in memory..

2490 MIDS(ACTS(SEO.NUM),6,o) a CHRS(I)
2500 MIDS(ACTI(SEQ.NUM),31,8) a CANDS
2510 FOR J a I TO MAX.N

2520 IF J a SEQ.NUM THEN GOTO 2570

2530 IF END.TIME (CVI(MIDS(ACTS(J),7,2)) THEN GO
TO 2570

2540 IF START.TIME) CVI(MIDS(ACTS(J),9,2)) THEN
COTO 2570
2550 Na ASC(MIDS(ACTS(J),I\83l,l))
2560 IF N AND 2'((I-1) MOD 8) THEN MIDS(ACTS(J),I
\8+31,1) a CHRS(B - 2"((I1-) MOD 8))

2570 NEXT

2580 IF PIL.NUM a MAX.PIL.NUM + 1 THEN GOTO 1560
2590 'it pil.num 0 61 then reset old pilots bit and avai

S(pl.num)...
2600 GET*2, PIL.NUM

2610 AVAILS a N222S

2620 NET.NLTS a N225S
2630 FOR N a I TO 7

2640 NET(N) a CVI(MIDS(NET.NLTS,N*4 - 3,2))
2650 NLT(N) a CVI(MIDS(NET.NLTS,N*4 - 1,2))

2660 NEXT

2670 BYTE a ASC(MIDS(CAND$,PIL.NUM\8+l,l)): NIT a (PIL NU

M-1) MOD 8
2680 IF (BYTE AND 2"BIT) a 0 THEN MIDS(CANDS,PIL NUM\8+1,
1) a CHRS(BYTE + 2"BIT)

2690 FOR I a START.BIT TO END-BIT
2700 BYTE a m\0 : BIT a (1-t) NOD 8
2710 BYTS a MIDS(AVAILS,BYTE,l)

2720 IF (ASC(BYTS) AND 2"BIT) a 0 THEN MIDS(AVAIL

r:-.........-.....,.-....-.-°,..°.-//-.,...- ... °. . .-.. ..

109
S,3YTE,1) a CHRS(ASC(BYTS) 2"81T)

2730 NEXT
2740 DAY a START.TIME\1440 + I

2750 If DAY (2 OR DAY) ? THEN GOTO 2960

2760 IF NLT(DAY-1) 0 START.TIME - 720 THEN GOTO 2810

2770 ACT.SCHED.TIME * NLT(DAY-1): GOSUB 3730

2780 PRINT"Cancelled activity set crew rest time for endi
rig previous day: *' THIS TIMES

2790 PRINT CS;: AS a INPUTS(1): PRINT AS

2800 IF AS a "I" THEN GOSU8 3410: NLT(DAY-1) a NEW.T + (D
AY - 2)*1440 ELSE IF AS () "0'" THEN PRINT ES: GOTO 2790
2810 IF NLT(DAY) () START.TIME + 720 THEN GOTO 2860

2820 ACT.SCHED.TIME a NLT(DAY): GOSUB 3730

2830 PRINT'"Cancelled activity set crew rest time for endi

nq this day: " THIS.TIMES
2840 PRINT CS;: AS a INPUTS(1): PRINT AS

2850 IF AS a "1" THEN GOSUB 3410: NLT(DAY) a NEW.T + (DAY

- 1)*1440 ELSE IF AS 0 "0" THEN PRINT ES" GOTO 2840

2860 IF NET(DAY) () END TIME - 720 THEN COTO 2910

2870 ACT.SCHED.TIME a NET(DAY): GOSUB 3730

2860 PRINT"Cancelled activity set crew rest time for begi

nning this day: " THIS.TIMES
2890 PRINT CS;: AS a INPUTS(l): PRINT AS

2900 IF AS u "I" THEN GOSUB 3410" NET(DAY) a NEW.T + (DAY

- 1)*1440 ELSE IF AS () "0" THEN PRINT ES: GOTO 2890

2910 IF NET(DAY+l) <) END.TIME + 720 THEN COTO 2960
2920 ACT.SCHED.TIME a NET(DAY+I). GOSUS 3730

2930 PRINT"Cancelled activity set crew rest time for begi

nning followinq day: " THIS.TIMES
2940 PRINT CS;' AS a INPUTS(l): PRINT AS

2950 IF AS a "I" THEN GOSUR 3410: NET(DAY+t) a NEW.T + DA

Y*1440 ELSE IF AS () "0" THEN PRINT ES: GOTO 2940

2960 PRINT PIL.NAMS(PIL.MUM) " is reset in " KDAT FILES

2970 LSET N2221 a AVAILS

2980 FOR N = 1 TO 7
2990 IF NET(N) 0 -1 THEN MIDS(NET.NLTS,N*4 - 3,2

) MKIS(NET(N))
3000 IF NLT(N) 0 -1 THEN MIDS(NET.NLTS,N*4 - 1,2
) * MXIS(NLT(N))

3010 NEXT
3020 LSET N2255 * NET.NLTS

3030 PUT92, PIL.NUM
3040 MIDS(ACTS(SEQ.NUM),31,8) C CANDS

3050 COTO 1560
'- 3060 RETURN

~3U70 '

3080 '_Lnternl_subroutines__
3090 1

3100 'crew rest check...
3110 'this routine checks and sets NET and NLT times used

for checking
3120 ' crew rest...
3130

3140 DAY a START.TIME\1440 + 1

3150 If DAY (2 OR DAY > 6 THEN C REST a -1 RETURN

S , ++ , .', ..'. .+ .- .-

.4 *+ '* '-*,.,*.'.** .. _ _ . .

110
3160
3170 IF START.TIME - NET(DAY) OR NET(DAY) = -1 THEN ST.C
K a -1 ELSE ST.CK a 0
3180 IF END.TIME (a NLT(DAY) OR NLT(DAY) a -1 THEN END CK

-1 ELSE END.CK a 0
3190
3200 IF ST.CK AND END.CK THEN C.REST = -1 ELSE C.REST = 0
: RETURN
3210
3220 IF (START.TIME-720 (MLT(DAY-1)) OR (NLT(DAY-1) = -1
) THEN NLT(DAY-I) a START.TIME - 720
3230 IF (NLT(DAY)) START.TIME+720) OR (NLT(DAY) a -1) TH
EN NLT(DAY) = START.TIME + 720
3240 IF (NET(DAY) (END.TIME-720) OR (NET(DAY) * -1) THEN
NET(DAY) END.TIME - 720
3250 IF (NET(DAY+I) (END.TIME+720) OR (NET(DAY+1) - -1)

THEN NET(DAY+I) a END.TIME + 720
3260
3270 RETURN
3280
3290 IF I MAX.PIL.NUM THEN I * I + I ELSE GOTO 3350
3300 BYTE a ASC(MID$(CAND$,I\O+1,1)): BIT a (I-1) MOD 8
3310 WHILE ((BYTE AND 2BIT) () 2"BIT) AND (I (MAX.PIL.N

"-'" UM)

3320 I a I + 1

3330 BYTE a ASC(MID$(CAND$,IX8+l,i)): BIT - (1-1)
MOD 8
3340 WEND
3350 RETURN
3360
3370 PRINT TAB((K*25+1) MOD 75) USING "##"; I-: PRINT " -

PIL.NAMS(I);: K a K + 1: IF K MOD 3 a 0 THEN PRINT

3380 RETURN
3390
3400
3410 PRINT"Enter the new crew rest time:";

3420 INPUT" ", NEW.T
3430 HR a NEW.T\100: HIN = NEW.T MOD 100: BAD - 0
3440 IF HR (0 OR HR) 24 THEN BAD a -1
3450 IF MIN (0 OR HIN) 59 THEN BAD a -1
3460 IF BAD THEN PRINT"Time not understood, re-enter as a
4 digit number": GOTO 3410

3470 NEW.T a HR*60 + MIN
3480 RETURN
3490
3500 'trim trailing spaces...
3510 L a LEN(TRIMS) + 1: L.CHR$ * CHRS(0)
3520 WHILE ASC(L.CHRS) (33
3530 L a L - I
3540 L.CHR$ a MIDS(TRIMIL,I)
3550 WEND
3560 TRIM a LEFTS(TRIMSL)
3570 RETURN
3580
3590 'dynamic array size increase

a.

- + .'%" %-q%" ~.. .. "--..- -. ,,-.•

111

3600 DIM TMPI(MAX.N)

3610 FOR M a 1 TO MAX.N: TIP$(M) = ACTS(M): NEXT
3620 ERASE ACTS: DIM ACTS(MAX.N * 10)

3630 FOR M a I TO MAX N: ACTS(M) a TMP$(M). NEXT
3640 MAX.N = MAX.N + 10
3650 ERASE TMPI

3660 ON ERROR GOTO 0
3670 RETURN

3680
3690 '
3700
3710 'this routine computes the time from a time in

3720 minutes of a week.
3730 HR a (ACTSCHED.TIME MOD 1440)\60
3740 MIN * (ACT.SCHED.TIME MOD 1440) MOD 60

3750 T$ a MIDS(STRS(HR),2): GOSUE 3790: HRS a T$
3760 TS a MIDS(STRS(MIN),2): GOSUB 3790: MIN$ a Ts
3770 THIS.TIMES a MRS * MIN$

3780 RETURN
3790 WHILE LEN(T$) (2

3800 TS a "0" * TS

3810 WEND
3820 RETURN

3830
3840
3850 'this routine determines the day and date of an
3860 ' activity from wk.date, wk.dateS, and the
3870 ' activity schedule time...

3880 DAY a ACT.SCHED.TIME\1440: THIS.DAYS a MIDS(DAY$,DAY

'3 + 1,3)

3890 THIS.DATE.J a WK.DATE + DAY: DAY.J a THIS.DATE.J MOD

1000
3900 YEAR = VAL(RIGHTS(WK.DATE$,2)): IF YEAR/4 a YEAR\4 T

HEN L.YR a -1 ELSE L.YR = 0

3910 MO = 0: NEXT.MO.IST.DAY * I
3920 WHILE (DAY.J) NEXT.MO.IST.DAY) AND (MO (12)
3930 'save new 'this month', get next month...
3940 THIS.MO.IST.DAY a NEXT.MO.1ST DAY

3950 MO a MO + I
3960 NEXT.MO.IST.DAY a VAL(MIDS(FIRST.DAYS,MO*3

1,3))
3970 IF (MO)= 2) AND L.YR THEN NEXT.MO.IST.DAY a

NEXT.MO.IST DAY + I

3960 WEND
3990 'when the day falls in the following year, loop is

4000 ' terminated by mo a 12, thus..
4010 IF DAY.J)a NEXT.MO.IST.DAY THEN YEAR a YEAR + 1. TH

IS.DATE a DAY.J - NEXT.MO.1ST.DAY + I ELSE THIS.DATE a DAY.J
- THIS.MO.1

ST.DAY + I
4020 THIS.DATES a MIDS(STRS(THIS.DATE),2) * ".". MID$(MO
NTH$,(MO-1)'3 .1,3) + STRS(YEAR)

4030 RETURN
4040 '
4050

* -.
.

' ''" '',/ Y ¢' ' '- , : ".'. :' , ,-- " , "," -" " " - " " ,,_ ,)m ." " t - . . -

:1 7

112
4060 '" CASE "*

4070 'module dated 24 April 1983
4080
4090 'This module includes subroutines called by other

4100 modules in determining the case of each

- 4110 activity relative to the week
4120
4130 'variables rquired:
4140 a PERIOD.ST.TIME as an integer in minutes or o
ther time units

4150 I PERIODDUR as an integer length of period

4160 INCR as an integer for the value of each bit

(resolution)
4170 START.TIME as values for the activity
4180 ' ENDTIME "

4190 ' AVAILS as a bit string with '1' available,

0' not avail
4200 AVAIL as a control code

4210 SET as a control code to set the time 'not a
vailable'
4220

4230 'returns:
4240 AVAIL as TRUE if time is available
4250 AVAILS updated if AVAIL and SET both TRUE
4260
4270 'subroutines used:

4280 all internal

4290
4300 GOSUB 4520

4310 GOSUB 4730
4320 RETURN
4330 _

4340
4350 ' This routine determines the case of activity
4360 ' start (CASEl) and end (CASE2) relative to

4370 the period start and end...
4380
4390 CASEI and CASE2 equal I if times are before

4400 the period starts, 2 if during the period,

4410 or 3 if after the period. Thus if CASEI is

4420 3 or CASE2 is 1, the whole activity falls
4430 outside the period in question. If both
4440 CASEI and CASE2 are 2, then the whole
4450 activity is within the period.

4460
4470 ' CASE3 has a value of I if the whole

4480 ' activity falls on a single byte, 2 if on

4490 ' adjacent bytes, and 3 if one or more whole

4500 ' bytes fall between the start and end.

4510
4520 START.BIT a START.TIME\INCR
4530 START.BYTE u START.81T\8 * I
4540 END.BIT a (END.TIME-I)\INCR
4550 END.IYTE w.END.BIT\8 + I
4560 If START.TIME . PERIOD.ST.TIME THEN CONDI -1 ELSE

113
COND 1 0

4570 IF START.TIME ((FERIOD.ST.TIME + PERIOD.DUR) THEN C

OND2 u -1 ELSE COND2 0
4580 IF CONDI AND COND2 THEN CASE1 - 2 ELSE IF NOT CONDi

THEN CASE1 = 1 ELSE IF NOT COND2 THEN CASE1 a 3
4590 IF END.TIME > PERIOD.ST.TIME THEN COND3 w -1 ELSE CO

ND3 a 0
4600 IF END.TIME (a (PERIOD.ST.TIMEePERIOD.DUR) THEN COND

4 a -1 ELSE COND4 a 0

4610 IF COND3 AND COND4 THEN CASE2 a 2 ELSE IF NOT COND3
THEN CASE2 - i ELSE IF NOT COND4 THEN CASEZ a 3

4620 IF END-BYTE * START.BYTE THEN CASE3 a 1

4630 IF END.BYTE - START.BYTE a I THEN CASE3 a 2

4640 IF END.BYTE - START.BYTE > I THEN CASE3 = 3

4650 RETURN
4660 '

4670
4680 This routine selects the proper routine for

4690 checking or setting availability based on

4700 the case defined by CASE1, CASE2, and CASE3

4710

4720 it start is before period.
4730 IF CASEl=1 AND CASE2Z2 THEN ON CASE3 GOSUB 4880,4980

.4980

4740 if start and end are during period.

4750 IF CASEI=2 AND CASEZ2 THEN ON CASE3 GOSUB 5110,5280

,5240

4760 if start is during period but end is after..

4770 IF CASES=2 AND CASE2=3 THEN ON CASE3 COSUB 5460,5590

,5590
4780 if start is before and end is after period.

4790 IF CASE1=1 AND CASE2a3 THEN FIRST.BYT=l: LAST.BYT=LE
N(AVAILS): COSUB 5630

4800 ' the final case ends before or starts after p

eriod
4810 IF CASE1m3 OR CASE2=l THEN PRINT"Activity is complet

ely outside the period..."

4820 RETURN

4830 '

4840

4850 This routine is used when END.BYTES is the

4860 first byte of AVAILS...

4870

4880 FIRST.BIT.USED a 0: LAST.BIT.USED • (END.BIT MOD 8)

4890 BYT.TO.CKS a LEFTS(AVAILS,I)
4900 GOSUS 5850

4910 IF AVAIL AND SET THEN MIDS(AVAILS,i,t) a CHRS(ASC(BY
T.TO.CKS) AND (NOT MASK))
4920 RETURN

4930 '
4940
4950 ' This routine is used when END BYTE points to

ll a

114

4960 end byte

4970
4980 FIRST.BYT a 1: LAST.BYT = END.BYTE-1

4990 GOSUB 5730
5000 FIRST.BIT USED = 0: LAST.BIT USED a (ENDABIT MOD 8)
500 BYT.TO.CKS a MIDS(AVAILS,END BYTE,l): J = END.BYTE
5020 GOSUB 5850
5030 IF AVAIL AND SET THEN GOSUB 5970 ELSE RETURN

5040 MIDS(AVAILS,END.BYTE,I) a CHRS(ASC(BYT.TO.CKS) AND
NOT MASK))
5050 RETURN
5060 _
5070
5080 ' This routine is used for the single byte case
5090 where one byte includes both start and end...
5100'

510 BYT.TO.CKS a MIDS(AVAILS,START.BYTE,I)

5120 MASK a 0
5130 FIRST.BIT.USED • (START.BIT MOD 8)
5140 LAST.BIT.USED * (END.BIT MOD 8)
5150 GOSUB 5850
5160 IF AVAIL AND SET THEN MIDS(AVAILS,START.BYTE,1) u CH

RS(ASC.(BYT TO.CKS) AND (NOT MASK))
5170 RETURN

5190
5200 This routine is used when one or more bytes
5210 separate the first and last bytes or when
5220 they are adjacent...
5230
5240 FIRST.BYT a START.BYTE+1: LAST.BYT a END.BYTE-1
5250 GOSUB 5730
5260 IF NOT AVAIL THEN RETURN
5270 CASE3 - 2 enters here...

5280 FIRST.BIT.USED a (START.BIT MOD 8): LAST.BIT USED •
7
5290 BYT.TO.CKS = MIDS(AVAILS,START.BYTE,I)
5300 GOSUB 5850

5310 IF AVAIL AND SET THEN MASK.ST=MASK: BYT STS=BYT.TO.C
KS ELSE IF NOT AVAIL THEN RETURN

5320 FIRST.BIT.USED a 0: LAST.BIT.USED a (END.BIT MOD 8)
5330 BYT.TO.CKS a MIDS(AVAILS,END.BYTE,1): J a END.BYTE

5340 GOSUB 5850
5350 IF NOT AVAIL THEN RETURN
5360 IF (CASE3u3) AND (AVAIL AND SET) THEN GOSUB 5970
3370 IF NOT(AVAIL AND SET) THEN RETURN

5380 MID$(AVAILS,START BYTEI) = CHRS(ASC(BYT.STS) AND (N

OT MASK.ST))
$390 MID$(AVAILS,END.BYTE,1) * CHRS(ASC(BYT.TO.CKS) AND

NOT MASK))
5400 RETURN

5420
5430 --- This routine is used when the last byte in the

5440 string is the only byte to be checked...

o* -.. . - .° o. -V' '- ° , ' '

5450 1
5460 YT.TO.CKS MIDS(AVAILSSTART.BYTEA)

5470 FIRST.BIT.USED a (START.BIT MOD 8): LAST.BIT.USED s

(PERIOD.END.BIT MOD 8)

5480 COSUB 5850
5490 IF AVAIL AND SET THEN MID$(AVAILS,START.BYTE,1) a CH
RS(ASC(BYT.TO.CKS) AND (NOT MASK))
5500 RETURN
5510 _
5520
5530 ' This routine is used when the activity ends
5540 after the period and the first byte is one

5550 or more bytes from the end of AVAILS. The

5560 last two cases of CASE3 are both checked by
5570 this routine...
5580
5590 FIRST.BIT.USED a (START.BIT MOD 8): LAST.BIT.USED -
7
5600 BYT.TO.CKS - MIDS(AVAILS,START.BYTE,I)
5610 GOSUB 5850

5620 FIRST.BYT a START.BYTE+I: LAST.BYT = LEN(AVAILS)
5630 GOSUB 5730

5640 IF AVAIL AND SET THEN GOSUB 5970 ELSE RETURN
5650 MID$(AVAILS,START.BYTE,1) = CHRS(ASC(BYT.TO.CKS) AND
(NOT MASK))

5660 RETURN
5670 _

5680

5690 This routine is used by the routines above when
5700 whole bytes are being checked for

5710 availability...

5720
5730 FOR J a FIRST.BYT TO LAST.BYT
5740 BYT.T.CKS = MID$(AVAILS,J,1)
5750 IF BYT.TO.CKS (0 CHRS(255) THEN FIRST.BIT.US
EDa0: LAST.BIT.USEDa7: GOSUB 5850
5760 IF NOT AVAIL THEN RETURN
5770 NEXT

5780 RETURN
5790'

5800
5810 This routine is called by above routines to

5820 check availability within partial bytes of

5830 AVAILS...
5840

5850 MASK - 0

5860 FOR K a FIRST.BIT.USED TO LAST.BIT.USED
5870 MASK a MASK + 2"K
5880 IF (ASC(BYT.TO.CKS) AND 2"K) a 0 THEN AVAIL

0- RETURN
5890 NEXT
5900 RETURN
5910 '

5920
5930 --- This routine is called when a whole byte is to

. j . . . • .

116
5940 be set to NOT AVAILABLE state, both AVAIL
5950 and SET are TRUE .

5960
5970 FOR J - FIRST.BYT TO LAST.BYT

5980 IDS(AVAILS,J,1) - CHRS (0)
5990 NEXT
6000 RETURN

6010 '

'V;

t'a

V. , . ' . % • % " -. . . ,• . .,-, • .. •. -. •. . • . . • ' . - . ..-. .*.- -

a'"°

BIBLIrOGRAPHY

6,|

,1 o

'p . : .i,'-'- ." -'-'-'-;-2-.i;. 2'i-. .-.-.- , " -. . 2'.' .- - ' .. -.-4 - -. . . .- . - - - .-. ..' .-

,* - .- ' s ,- ,- - . - - . . - V. . - . . ' - -- . - .. - . . .

118

Aho, Alfred V., John E. Hopcroft, and Jeffrey D. Ullman. The
Design and Analysis of Computer Algorithms. Reading, MA:
Addison-Wesley Publishing Co., 1974.

Berman, Morton B. The DOSS Prototype. #WN-9484-PR. Santa
Monica, CA: Rand Corporation, 1976.

_ Scheduling Aircrews and Aircraft: Problems ofResource Allocation in the Strategic Air Command. #R-
1610-PR. Santa Monica, CA: Rand Corporation, 1975.

DEPARTMENT OF THE AIR FORCE, Headquarters Tactical Air Com-
mand. FLYING TRAINING: TACTICAL FIGHTER/RECONNAISSANCE
AIRCREW TRAINING. TAC MANUAL 51-50, Volume I, 26 Octo-
ber 1981.

• TAC AND ARF TRAINING: FIGHTER AND RECONNAISSANCE.
TACM 51-50 Volume I, Chapter 6, 15 February 1982.

v Flying Training: F-15 AIRCREW TRAINING. TAC
MANUAL 51-50, Volume VII, 26 March 1982.

DEPARTMENT OF THE AIR FORCE, Headquarters United States Air
Force. Flying: PLANNING AND SCHEDULING AIRCREWS AND
EQUIPMENT. AF REGULATION 60-12, 22 March 1979.

DEPARTMENT OF THE AIR FORCE, Headquarters United States Air
Forces in Europe. Flying: PLANNING AND SCHEDULING AIR-
CREWS AND EQUIPMENT. USAFE Supplement 1 to AFR 60-12 (22
March 1979), 5 August 1982.

__.__• Flying Training: TACTICAL FIGHTER/RECONNAISSANCE
AIRCREW TRAINING. USAFE Chapter 6 to TACM 51-50, Volume
I, 1 October 1982.

Grogono, Peter. Programming in Pascal: Revised Edition.
Reading, MA: Addison-Wesley, 1980, 1978.

Hogan, Thom and Mike Iannamico, OSBORNE 1 User's Reference
Guide. Hayward, CA: Osborne Computer Corp., 1981, re-
vised 2/22/82.

Horowitz, Ellis, and Sartaj Sahni. Fundamentals of Data
Structures. Rockville, MD: Computer Science Press, Inc.,
1982, 1976.

Jensen, Kathleen and Niklaus Wirth, PASCAL: User Manual and
Report: 2d ed (corrected printing 1978). New York:
Springer-Verlag, 1974.

wq.
.

119

Kernighan, Brian W., and P. J. Plauger. The Elements of
Pro ramming Style: 2d ed. New York: McGraw-Hill, 1978,
1974.

_ Software Tools. Reading, MA: Addison-Wesley Pub-
lishing Co., 1976.

Knuth, Donald E. The Art of Computer Programming: Vol. 1
Fundamental Algorithms: 2d ed. Reading, MA: Addison-
Wesley Publishing Co., 1973, 1968.

_ The Art of Computer Programming: Vol. 2 Semi-
numerical Algorithms: 2d ed. Reading, MA: Addison-Wesley
Publishing Co., 1981, 1969.

• The Art of Computer Programming: Vol. 3 Sorting
and Searching. Reading, MA: Addison-Wesley Publishing
Co., 1973.

Leventhal, Lance A. 8080A - 8085 Assembly Language Program-

ming. Berkeley, CA: Osborne/McGraw-Hill, 1978.

_ Z80 Assembly Lansuage Programming. Berkeley, CA:
Osborne/McGraw-Hill, 1979.

Lien, David A. The BASIC Handbook: 2d ed. San Diego, CA:
Compusoft Publishing, 1981.

Osborne, Adam and David Bunnell. An Introduction to Micro-
computers: Vol. 0 The Beginners Book: 3d ed. Berkeley,
CA: Osborne/McGraw-Hill, 1982, 1979, 1977.

Osborne, Adam. An Introduction to Microcomputers: Vol. 1
Basic Concepts: 2d ed. Berkeley CA: Osborne/McGraw-
Hill, 1980, 1976.

Pannell, Carlton L. A LINEAR PROGRAMMING APPLICATION TO
AIRCREW SCHEDULING. Ft. Leavenworth, KS: US Army
Command and General Staff College, 1980.

Stern, Robert A. and Nancy Stern. An Introduction to Comput-
ers and Information Processing. New York: John Wiley and
Sons, 1982, 1979.

Strunk, Richard R. Can TAC Operations be Computer Sched-
uled? Maxwell AFB, AL: US Air Force Air Command and
Staff College, 1977.

.4

. " • " " " " -. .-. .

INITIAL DISTRIBUTION LIST

Combined Arms Research Library
U.S. Army Command and General Staff College
Fort Leavenworth, Kansas 66027

Defense Technical Information Center
Cameron Station
Alexandria, Virginia 22314

Mr. David I. Drummond
U.S. Army Command and General Staff College
Department of Command
Fort Leavenworth, Kansas 66027

Lieutenant Colonel William B. Allard
3220 Homer Road
Winoma, Minnesota 55987

Major Donald Hayes
U.S. Army Command and General Staff College
Air Force Section
Fort Leavenworth, Kansas 66027

-4,

1o

.4

